Frequency shift, damping, and tunneling current coupling with quartz tuning forks in noncontact atomic force microscopy

Autor: Franck Para, Laurent Nony, Franck Bocquet, Christian Loppacher
Přispěvatelé: Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP), Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Physical Review B: Condensed Matter and Materials Physics (1998-2015)
Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 2016, 94 (115421), ⟨10.1103/PhysRevB.94.115421⟩
Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2016, 94 (115421), ⟨10.1103/PhysRevB.94.115421⟩
ISSN: 1098-0121
1550-235X
DOI: 10.1103/PhysRevB.94.115421⟩
Popis: A combined experimental and theoretical approach to the coupling between frequency-shift $(\mathrm{\ensuremath{\Delta}}f)$, damping, and tunneling current (${I}_{t}$) in combined noncontact atomic force microscopy/scanning tunneling microscopy using quartz tuning forks (QTF)-based probes is reported. When brought into oscillating tunneling conditions, the tip located at the QTF prong's end radiates an electromagnetic field which couples to the QTF prong motion via its piezoelectric tensor and loads its electrodes by induction. Our approach explains how those ${I}_{t}$-related effects ultimately modify the $\mathrm{\ensuremath{\Delta}}f$ and the damping measurements. This paradigm to the origin of the coupling between ${I}_{t}$ and the nc-AFM regular signals relies on both the intrinsic piezoelectric nature of the quartz constituting the QTF and its electrodes design.
Databáze: OpenAIRE