N-Doped Carbon Dots Derived from Melamine and Triethanolamine for Selective Sensing of Fe3+ Ions
Autor: | Sathishkumar Munusamy, Sathish Sawminathan, Maura Casales Díaz, Srinivas Godavarthi, Thanigaivelan Arumugham, Mohan Kumar Kesarla |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Detection limit
inorganic chemicals Materials science Article Subject Ligand Inorganic chemistry Quantum yield chemistry.chemical_element Fluorescence chemistry.chemical_compound chemistry Linear range Triethanolamine medicine T1-995 General Materials Science Melamine Carbon Technology (General) medicine.drug |
Zdroj: | Journal of Nanomaterials, Vol 2021 (2021) |
ISSN: | 1687-4129 1687-4110 |
Popis: | This work reports nitrogen-doped carbon dots (NCDs) as a selective sensing probe to detect Fe3+ in water samples. NCD probes were synthesized via solvothermal method using nitrogen-rich melamine and triethanolamine as precursors. Properties of the resulting NCDs were studied using different characterization techniques, through which N-doping was confirmed. The quantum yield of obtained NCDs was measured to be 21%. When excited at 370 nm, the excellent blue emission property makes this probe adoptable for selectively sensing Fe3+ in practical water samples. The limit of detection (LOD) was identified as 216 nM with a good linear range between the concentrations of 0.2-2 μM. The obtained LOD is far less than the World Health Organization (WHO) permissible limits of Fe3+ in water. Interference studies reveal that the presence of other competing ions did not alter the sensing of Fe3+, even at the presence of 10 equivalents which indicates the high selectivity of NCDs towards Fe3+. The reversibility studies showed that adding a cheap and readily available EDTA ligand to the NCD results in fluorescence regeneration, leading to exceptional reusability for the detection of Fe3+. So, the synthesized NCDs can be used as a suitable probe for the selective determination of Fe3+ in real water samples. |
Databáze: | OpenAIRE |
Externí odkaz: |