Discovery and Preclinical Validation of [11C]AZ13153556, a Novel Probe for the Histamine Type 3 Receptor

Autor: Akihiro Takano, Lars Farde, Peter Johnström, Dean G. Brown, Maria Nilsson, Anders Juréus, Sjoerd J. Finnema, Jonas Malmquist, Nahid Amini, Lenke Tari, Jenny Häggkvist, Steven Wesolowski, Scott Throner, Magnus Schou, Ryuji Nakao, Katarina Varnäs, Charlotte Ahlgren
Rok vydání: 2015
Předmět:
Zdroj: ACS Chemical Neuroscience. 7:177-184
ISSN: 1948-7193
DOI: 10.1021/acschemneuro.5b00268
Popis: The histamine type 3 receptor (H3) is a G protein-coupled receptor implicated in several disorders of the central nervous system. Herein, we describe the radiolabeling and preclinical evaluation of a candidate radioligand for the H3 receptor, 4-(1S,2S)-2-(4-cyclobutylpiperazine-1-carbonyl)cyclopropyl]-N-methyl-benzamide (5), and its comparison with one of the frontrunner radioligands for H3 imaging, namely, GSK189254 (1). Compounds 1 and 5 were radiolabeled with tritium and carbon-11 for in vitro and in vivo imaging experiments. The in vitro binding of [(3)H]1 and [(3)H]5 was examined by (i) saturation binding to rat and nonhuman primate brain tissue homogenate and (ii) in vitro autoradiography on tissue sections from rat, guinea pig, and human brain. The in vivo binding of [(11)C]1 and [(11)C]5 was examined by PET imaging in mice and nonhuman primates. Bmax values obtained from Scatchard analysis of [(3)H]1 and [(3)H]5 binding were in good agreement. Autoradiography with [(3)H]5 on rat, guinea pig, and human brain slices showed specific binding in regions known to be enhanced in H3 receptors, a high degree of colocalization with [(3)H]1, and virtually negligible nonspecific binding in tissue. PET measurements in mice and nonhuman primates demonstrated that [(11)C]5 binds specifically and reversibly to H3 receptors in vivo with low nonspecific binding in brain tissue. Whereas [(11)C]1 showed similar binding characteristics in vivo, the binding kinetics appeared faster for [(11)C]5 than for [(11)C]1.[(11)C]5 has suitable properties for quantification of H3 receptors in nonhuman primate brain and has the potential to offer improved binding kinetics in man compared to [(11)C]1.
Databáze: OpenAIRE