Modules over monads and operational semantics (expanded version)
Autor: | André Hirschowitz, Tom Hirschowitz, Ambroise Lafont |
---|---|
Přispěvatelé: | Université Côte d'Azur (UCA), Laboratoire de Mathématiques (LAMA), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), University of New South Wales [Sydney] (UNSW) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
FOS: Computer and information sciences
Computer Science - Logic in Computer Science D.3.1 Computer Science - Programming Languages General Computer Science 68N15 [INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO] Mathematics - Category Theory Theoretical Computer Science Logic in Computer Science (cs.LO) TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES TheoryofComputation_LOGICSANDMEANINGSOFPROGRAMS Computer Science::Logic in Computer Science FOS: Mathematics F.3.2 Category Theory (math.CT) Programming Languages (cs.PL) |
Zdroj: | HAL |
Popis: | This paper is a contribution to the search for efficient and high-level mathematical tools to specify and reason about (abstract) programming languages or calculi. Generalising the reduction monads of Ahrens et al., we introduce transition monads, thus covering new applications such as lambda-bar-mu-calculus, pi-calculus, Positive GSOS specifications, differential lambda-calculus, and the big-step, simply-typed, call-by-value lambda-calculus. Moreover, we design a suitable notion of signature for transition monads. |
Databáze: | OpenAIRE |
Externí odkaz: |