Randomized Self Organizing Map

Autor: Georgios Detorakis, Nicolas P. Rougier
Přispěvatelé: Mnemonic Synergy (Mnemosyne), Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut des Maladies Neurodégénératives [Bordeaux] (IMN), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), adNomus Inc., San Jose, CA, USA, This work was partially funded by grant ANR-17-CE24-0036., ANR-17-CE24-0036,SOMA,Auto-organisation dans les architectures matérielles neuromorphiques(2017), Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest
Rok vydání: 2020
Předmět:
Self-organizing map
FOS: Computer and information sciences
Computer Science - Machine Learning
Computer science
Cognitive Neuroscience
02 engineering and technology
Network topology
Machine Learning (cs.LG)
03 medical and health sciences
0302 clinical medicine
Arts and Humanities (miscellaneous)
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
0202 electrical engineering
electronic engineering
information engineering

Neural and Evolutionary Computing (cs.NE)
Difference-map algorithm
Neurons
business.industry
Computer Science - Neural and Evolutionary Computing
Pattern recognition
Manifold
Data set
Colors of noise
020201 artificial intelligence & image processing
Topological data analysis
Artificial intelligence
Neural Networks
Computer

business
030217 neurology & neurosurgery
MNIST database
Algorithms
Zdroj: Neural Computation
Neural Computation, Massachusetts Institute of Technology Press (MIT Press), In press
Neural Computation, inPress, ⟨10.1162/neco_a_01406⟩
ISSN: 0899-7667
1530-888X
DOI: 10.48550/arxiv.2011.09534
Popis: We propose a variation of the self organizing map algorithm by considering the random placement of neurons on a two-dimensional manifold, following a blue noise distribution from which various topologies can be derived. These topologies possess random (but controllable) discontinuities that allow for a more flexible self-organization, especially with high-dimensional data. The proposed algorithm is tested on one-, two- and three-dimensions tasks as well as on the MNIST handwritten digits dataset and validated using spectral analysis and topological data analysis tools. We also demonstrate the ability of the randomized self-organizing map to gracefully reorganize itself in case of neural lesion and/or neurogenesis.
Comment: 32 pages, 19 figures
Databáze: OpenAIRE