Ranking customers for marketing actions with a two‐stage Bayesian cluster and Pareto/ NBD models
Autor: | Ignasi Puig-de-Dou, Daniel González Ibáñez, Xavier Puig |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Doctorat en Estadística i Investigació Operativa, Universitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa, Universitat Politècnica de Catalunya. ADBD - Anàlisi de Dades Complexes per a les Decisions Empresarials |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Applied Stochastic Models in Business and Industry. 38:609-619 |
ISSN: | 1526-4025 1524-1904 |
Popis: | Modelling customer behaviour to predict their future purchase frequency and value is crucial when selecting customers for marketing activities. The profitability of a customer and their risk of inactivity are two important factors in this selection process. These indicators can be obtained using the well-known Pareto/NBD model. Here we cluster customers based on their purchase frequency and value over a given period before applying the Pareto/NBD model to each cluster. This initial cluster model provides the customer purchase value and improves the predictive accuracy of the Pareto/NBD parameters by using similar individuals when fitting the data. Finally, taking the outputs from both models, the initial cluster and Pareto/NBD, we present some recommendations to classify customers into interpretable groups and facilitate their prioritisation for marketing activities. To illustrate the methodology, this paper uses a database with sales from a beauty products wholesaler. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |