The solvability conditions for the inverse eigenproblems of symmetric and generalized centro-symmetric matrices and their approximations

Autor: Yan-ping Sheng, Dongxiu Xie, Xi-Yan Hu
Rok vydání: 2006
Předmět:
Zdroj: Linear Algebra and its Applications. 418(1):142-152
ISSN: 0024-3795
DOI: 10.1016/j.laa.2006.01.027
Popis: Let ∥ · ∥ be the Frobenius norm of matrices. We consider (I) the set SE of symmetric and generalized centro-symmetric real n × n matrices Rn with some given eigenpairs (λj, qj) (j = 1, 2, … , m) and (II) the element Rˆ in SE which minimizes ‖R∗-Rˆ‖ for a given real matrix R∗. Necessary and sufficient conditions for SE to be nonempty are presented. A general form of elements in SE is given and an explicit expression of the minimizer Rˆ is derived. Finally, a numerical example is reported.
Databáze: OpenAIRE