Oral Colon-Targeted Konjac Glucomannan Hydrogel Constructed through Noncovalent Cross-Linking by Cucurbit[8]uril for Ulcerative Colitis Therapy

Autor: Tianlei Sun, Liangkui Zhu, Yuan-Fu Ding, Shengke Li, Ludan Yue, Qiaoxian Huang, Ruibing Wang
Rok vydání: 2022
Předmět:
Zdroj: ACS applied bio materials. 3(1)
ISSN: 2576-6422
Popis: Orally administered colon-targeted formulations of drugs are of great importance in managing diseases in the colon. However, it is often challenging to maintain the integrity of such formulations during delivery, particularly in the gastric environment, which may lead to premature drug release before reaching the targeted colon. Herein, an oral colon-targeted drug delivery hydrogel (OCDDH) was developed through cucurbit[8]uril (CB[8])-mediated noncovalent cross-linking of phenylalanine (Phe)-modified Konjac glucomannan (KGM), in which berberine (BBR), a natural anti-inflammatory product originating from Chinese medicine, was loaded into the hydrogel matrix. With the strong host-guest complexation mediated cross-linking and the inherent reversibility of such interactions, KGM-Phe@CB[8] hydrogel exhibited a readily tunable degree of cross-linking and an excellent self-healing capability, and therefore the hydrogel retained ultrahigh stability in the gastric environment, which is important for orally administered formulations to target the colon. In the colon, KGM may get degraded by colon-specific enzymes, β-mannanase or β-glucosidase, resulting in burst release of the loaded cargoes on site. The structure and specific payload release of the hydrogel, with and without BBR, have been fully characterized in vitro, and the therapeutic effect of BBR-loaded KGM-Phe@CB[8] hydrogel was evaluated against dextran sulfate sodium (DSS) induced ulcerative colitis (UC) in a mouse model. Very interestingly, the BBR-loaded KGM-Phe@CB[8] hydrogel exhibited significantly improved therapeutic efficacy in treating colitis, without causing any systemic toxicity, when compared with free BBR. This strategy may pave a new way in the development of advanced supramolecular OCDDH.
Databáze: OpenAIRE