Connectivity and Automation as Enablers for Energy-Efficient Driving and Road Traffic Management
Autor: | Carlos Canudas-de-Wit, Giovanni De Nunzio, Antonio Sciarretta, Bassel Othman, Domenico Di Domenico |
---|---|
Přispěvatelé: | IFP Energies nouvelles (IFPEN), Dynamics and Control of Networks (DANCE), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-GIPSA Pôle Automatique et Diagnostic (GIPSA-PAD), Grenoble Images Parole Signal Automatique (GIPSA-lab), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Grenoble Alpes (UGA), Lackner M., Sajjadi B., Chen WY. (eds) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Optimization
0209 industrial biotechnology Connected and automated vehicles Computer science business.industry Traffic management 05 social sciences Road traffic management Energy-efficient driving Infrastructure control 02 engineering and technology Vehicle Platooning 7. Clean energy Automation [SPI.AUTO]Engineering Sciences [physics]/Automatic Transport engineering Cooperative control 020901 industrial engineering & automation Energy efficiency 13. Climate action 0502 economics and business 11. Sustainability Mixed traffic business 050212 sport leisure & tourism |
Zdroj: | Handbook of Climate Change Mitigation and Adaptation Handbook of Climate Change Mitigation and Adaptation, Springer, pp.XXVII, 2130, 2021, 978-1-4614-6431-0. ⟨10.1007/978-1-4614-6431-0_128-1⟩ Handbook of Climate Change Mitigation and Adaptation ISBN: 9781461464310 Lackner M., Sajjadi B., Chen WY. (eds). Handbook of Climate Change Mitigation and Adaptation, Springer, pp.XXVII, 2130, 2021, 978-1-4614-6431-0. ⟨10.1007/978-1-4614-6431-0_128-1⟩ |
DOI: | 10.1007/978-1-4614-6431-0_128-1⟩ |
Popis: | International audience; In the member countries of the Organization for Economic Cooperation and Development (OECD), projections show that the improved energy efficiency in transportation may lead to a net decline of about 2% in energy use until 2040, thus outpacing the predicted increase of vehicle-miles traveled (VMT). However, in OECD-Europe, transportation still represents the biggest source of carbon emissions, contributing by about 25% to the total CO2 emissions, with cars and vans representing more than two thirds of this share. The situation is even more alarming in non-OECD countries, where the transportation energy demand is expected to rise by 64% until 2040. The shift that we are witnessing toward the adoption of connected and automated vehicles (CAVs) is going to be perhaps, the most disruptive since the early days of automobiles and could revolutionize movement of people and goods. This level of connectivity and autonomy will transform transportation in several dimensions with important societal and economic impacts: improved safety, increased comfort, time saving potential, and more efficient road utilization are among the most widely discussed positive impacts of CAVs. However, the potential energy efficiency benefits of these technologies remain uncertain. From a single-vehicle efficiency perspective, research suggests that lightweight, low-speed, autonomous vehicles have the potential to achieve fuel economy an order of magnitude higher than current cars. Yet, at system-wide level, current estimates suggest that the total energy consumption impacts can range from a 90% decrease to a 200% increase in fuel consumption as compared to a projected 2050 baseline energy consumption. The paradigm that traffic congestion mitigation should reduce CO2 emissions is yet to be proved. Therefore, interest in transportation regulation problems with explicit environmental considerations is growing. This work takes a more in-depth look at increased opportunities for energy-efficient driving with energy-oriented traffic management and CAVs deployment. In particular, the focus will be put on the road traffic control strategies in urban networks using connectivity to enable variable speed limits and traffic light adaptive control, as well as the energy-saving opportunities that arise for individual CAVs by anticipating future road geometry, traffic conditions, and interactions with neighboring vehicles. |
Databáze: | OpenAIRE |
Externí odkaz: |