Towards Measuring Fairness in Speech Recognition: Casual Conversations Dataset Transcriptions

Autor: Chunxi Liu, Michael Picheny, Leda Sari, Pooja Chitkara, Alex Xiao, Xiaohui Zhang, Mark Chou, Andres Alvarado, Caner Hazirbas, Yatharth Saraf
Rok vydání: 2021
Předmět:
DOI: 10.48550/arxiv.2111.09983
Popis: It is well known that many machine learning systems demonstrate bias towards specific groups of individuals. This problem has been studied extensively in the Facial Recognition area, but much less so in Automatic Speech Recognition (ASR). This paper presents initial Speech Recognition results on "Casual Conversations" -- a publicly released 846 hour corpus designed to help researchers evaluate their computer vision and audio models for accuracy across a diverse set of metadata, including age, gender, and skin tone. The entire corpus has been manually transcribed, allowing for detailed ASR evaluations across these metadata. Multiple ASR models are evaluated, including models trained on LibriSpeech, 14,000 hour transcribed, and over 2 million hour untranscribed social media videos. Significant differences in word error rate across gender and skin tone are observed at times for all models. We are releasing human transcripts from the Casual Conversations dataset to encourage the community to develop a variety of techniques to reduce these statistical biases.
Comment: Submitted to ICASSP 2022. Our dataset will be publicly available at (https://ai.facebook.com/datasets/casual-conversations-downloads) for general use. We also would like to note that considering the limitations of our dataset, we limit the use of it for only evaluation purposes (see license agreement)
Databáze: OpenAIRE