Symmetries of Julia sets for analytic endomorphisms of the Riemann sphere

Autor: Gustavo Rodrigues Ferreira, Luciana Luna Anna Lomonaco
Přispěvatelé: Luciana Luna Anna Lomonaco, Sylvain Philippe Pierre Bonnot, Peter Edward Hazard
Rok vydání: 2019
Předmět:
Zdroj: Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo (USP)
instacron:USP
DOI: 10.11606/d.45.2019.tde-15082019-110500
Popis: Since the 1980s, much progress has been done in completely determining which functions share a Julia set. The polynomial case was completely solved in 1995, and it was shown that the symmetries of the Julia set play a central role in answering this question. The rational case remains open, but it was already shown to be much more complex than the polynomial one. In this thesis, we review existing results on rational maps sharing a Julia set, and offer results of our own on the symmetry group of such maps. Desde a década de oitenta, um enorme progresso foi feito no problema de determinar quais funções têm o mesmo conjunto de Julia. O caso polinomial foi completamente respondido em 1995, e mostrou-se que as simetrias do conjunto de Julia têm um papel central nessa questão. O caso racional permanece aberto, mas já se sabe que ele é muito mais complexo do que o polinomial. Nesta dissertação, nós revisamos resultados existentes sobre aplicações racionais com o mesmo conjunto de Julia e apresentamos nossos próprios resultados sobre o grupo de simetrias de tais aplicações.
Databáze: OpenAIRE