An Eulerian finite-volume approach of fluid-structure interaction problems on quadtree meshes
Autor: | Bergmann, Michel, Fondanèche, Antoine, Iollo, Angelo |
---|---|
Přispěvatelé: | Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Modeling Enablers for Multi-PHysics and InteractionS (MEMPHIS), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), European Project: 872442,ARIA(2019) |
Jazyk: | angličtina |
Předmět: |
History
Numerical Analysis Polymers and Plastics hierarchical Cartesian meshes Physics and Astronomy (miscellaneous) Applied Mathematics fluid-structure interaction finite volume method Industrial and Manufacturing Engineering Computer Science Applications Computational Mathematics Modeling and Simulation biomedical application Business and International Management monolithic Eulerian approach [MATH]Mathematics [math] |
Zdroj: | Journal of Computational Physics Journal of Computational Physics, 2022, 471 (111647), ⟨10.1016/j.jcp.2022.111647⟩ |
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2022.111647 |
Popis: | International audience; A quadtree-based fully Eulerian finite volume approach for the simulation of fluid-structure interaction problems is presented. Both fluid and structure phases are solved monolithically on the whole computational domain. The discretization stencils are limited to the first layer of neighbors thus enhancing the efficiency of the parallel computations while limiting the numerical order of the finite volume discretizations that can be reached. The behavior of hyperelastic structures is described with the non-linear Mooney-Rivlin model. The simulation of several two dimensional test cases is performed on uniform and quadtree grids and results are compared with the literature. To illustrate the versatility of the numerical model presented, a biomedical application, the axisymmetric simulation of a blood flow in a cardiac pump, is presented. |
Databáze: | OpenAIRE |
Externí odkaz: |