Machine learning techniques for diabetic macular edema (DME) classification on SD-OCT images
Autor: | Désiré Sidibé, Khaled Alsaih, Mojdeh Rastgoo, Fabrice Meriaudeau, Guillaume Lemaitre, Joan Massich |
---|---|
Přispěvatelé: | Laboratoire d'Electronique, d'Informatique et d'Image [EA 7508] (Le2i), Université de Technologie de Belfort-Montbeliard (UTBM)-Université de Bourgogne (UB)-École Nationale Supérieure d'Arts et Métiers (ENSAM), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS), Centre for Intelligent Signal and Imaging Research [Petronas] (CISIR), Universiti Teknologi PETRONAS (UTP), Laboratoire d'Electronique, d'Informatique et d'Image UMR CNRS 6306 ( Le2i ), Université de Technologie de Belfort-Montbeliard ( UTBM ) -Centre National de la Recherche Scientifique ( CNRS ) -École Nationale Supérieure d'Arts et Métiers ( ENSAM ) -Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Centre for Intelligent Signal and Imaging Research (Universiti Teknologi Petronas) ( CISIR ) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
SD-OCT
lcsh:Medical technology genetic structures Local binary patterns Computer science BoW Biomedical Engineering 02 engineering and technology Signal-To-Noise Ratio Macular Edema Biomaterials Machine Learning 03 medical and health sciences 0302 clinical medicine Optical coherence tomography LBP 0202 electrical engineering electronic engineering information engineering medicine Image Processing Computer-Assisted Humans Radiology Nuclear Medicine and imaging Computer vision [ SDV.IB ] Life Sciences [q-bio]/Bioengineering Feature detection (computer vision) Diabetic Retinopathy Radiological and Ultrasound Technology medicine.diagnostic_test business.industry General Medicine Classification DME detection eye diseases Support vector machine Histogram of oriented gradients lcsh:R855-855.5 HoG Bag-of-words model Feature (computer vision) Principal component analysis Reseach 030221 ophthalmology & optometry 020201 artificial intelligence & image processing [SDV.IB]Life Sciences [q-bio]/Bioengineering Artificial intelligence sense organs SD-OCT Classification business Tomography Optical Coherence |
Zdroj: | BioMedical Engineering BioMedical Engineering OnLine, BioMed Central, 2017, ⟨10.1186/s12938-017-0352-9⟩ BioMedical Engineering OnLine, Vol 16, Iss 1, Pp 1-12 (2017) BioMedical Engineering OnLine, BioMed Central, 2017, 〈https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-017-0352-9〉. 〈10.1186/s12938-017-0352-9 〉 |
ISSN: | 1475-925X |
DOI: | 10.1186/s12938-017-0352-9⟩ |
Popis: | Background Spectral domain optical coherence tomography (OCT) (SD-OCT) is most widely imaging equipment used in ophthalmology to detect diabetic macular edema (DME). Indeed, it offers an accurate visualization of the morphology of the retina as well as the retina layers. Methods The dataset used in this study has been acquired by the Singapore Eye Research Institute (SERI), using CIRRUS TM (Carl Zeiss Meditec, Inc., Dublin, CA, USA) SD-OCT device. The dataset consists of 32 OCT volumes (16 DME and 16 normal cases). Each volume contains 128 B-scans with resolution of 1024 px × 512 px, resulting in more than 3800 images being processed. All SD-OCT volumes are read and assessed by trained graders and identified as normal or DME cases based on evaluation of retinal thickening, hard exudates, intraretinal cystoid space formation, and subretinal fluid. Within the DME sub-set, a large number of lesions has been selected to create a rather complete and diverse DME dataset. This paper presents an automatic classification framework for SD-OCT volumes in order to identify DME versus normal volumes. In this regard, a generic pipeline including pre-processing, feature detection, feature representation, and classification was investigated. More precisely, extraction of histogram of oriented gradients and local binary pattern (LBP) features within a multiresolution approach is used as well as principal component analysis (PCA) and bag of words (BoW) representations. Results and conclusion Besides comparing individual and combined features, different representation approaches and different classifiers are evaluated. The best results are obtained for LBP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{16 {\text{-}} \mathrm{ri}}$$\end{document}16-ri vectors while represented and classified using PCA and a linear-support vector machine (SVM), leading to a sensitivity(SE) and specificity (SP) of 87.5 and 87.5%, respectively. |
Databáze: | OpenAIRE |
Externí odkaz: |