Medians in median graphs and their cube complexes in linear time
Autor: | Laurine Bénéteau, Jérémie Chalopin, Victor Chepoi, Yann Vaxès |
---|---|
Přispěvatelé: | Algorithmique, Combinatoire et Recherche Opérationnelle (ACRO), Laboratoire d'Informatique et Systèmes (LIS), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Algorithmique Distribuée (DALGO), Artur Czumaj and Anuj Dawar and Emanuela Merelli, ANR-17-CE40-0015,DISTANCIA,Théorie métrique des graphes(2017), Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2019 |
Předmět: |
FOS: Computer and information sciences
General Computer Science Median Problem Discrete Mathematics (cs.DM) Computer Networks and Communications Mathematics of computing → Graph algorithms [INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] Theory of computation → Computational geometry 0102 computer and information sciences 02 engineering and technology [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] CAT(0) Cube Complex Linear Time Algorithm [INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG] 01 natural sciences Theoretical Computer Science TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] Computer Science - Data Structures and Algorithms 0202 electrical engineering electronic engineering information engineering FOS: Mathematics Mathematics - Combinatorics Data Structures and Algorithms (cs.DS) 0101 mathematics [MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG] ComputingMilieux_MISCELLANEOUS Applied Mathematics 010102 general mathematics Computational Theory and Mathematics 010201 computation theory & mathematics Median Graph Event Structure LexBFS 020201 artificial intelligence & image processing Combinatorics (math.CO) Computer Science - Discrete Mathematics MathematicsofComputing_DISCRETEMATHEMATICS |
Zdroj: | ICALP 2020 47th International Colloquium on Automata, Languages, and Programming ICALP 2020 47th International Colloquium on Automata, Languages, and Programming, 2020, Saarbrücken, Germany. pp.10:1--10:17, ⟨10.4230/LIPIcs.ICALP.2020.10⟩ Journal of Computer and System Sciences Journal of Computer and System Sciences, 2022, 126, pp.80-105. ⟨10.1016/j.jcss.2022.01.001⟩ |
ISSN: | 0022-0000 1090-2724 |
DOI: | 10.48550/arxiv.1907.10398 |
Popis: | International audience; The median of a set of vertices P of a graph G is the set of all vertices x of G minimizing the sum of distances from $x$ to all vertices of P. In this paper, we present a linear time algorithm to compute medians in median graphs, improving over the existing quadratic time algorithm. We also present a linear time algorithm to compute medians in the l_1-cube complexes associated with median graphs. Median graphs constitute the principal class of graphs investigated in metric graph theory and have a rich geometric and combinatorial structure, due to their bijections with CAT(0) cube complexes and domains of event structures. Our algorithm is based on the majority rule characterization of medians in median graphs and on a fast computation of parallelism classes of edges (Theta-classes or hyperplanes) via Lexicographic Breadth First Search (LexBFS). To prove the correctness of our algorithm, we show that any LexBFS ordering of the vertices of G satisfies the following \emph{fellow traveler property} of independent interest: the parents of any two adjacent vertices of G are also adjacent. Using the fast computation of the Theta-classes, we also compute the Wiener index (total distance) of G in linear time and the distance matrix in optimal quadratic time. |
Databáze: | OpenAIRE |
Externí odkaz: |