Characterization of dual‐junction III‐V on Si tandem solar cells with 23.7% efficiency under low concentration
Autor: | Claire Besancon, Laura Vauche, Alejandro Datas, Pablo Garcia-Linares, Philippe Voarino, Cecilia Dupre, Elias Veinberg-Vidal, Jean Decobert, Karim Medjoubi, Anne Kaminski-Cachopo, Clément Weick, Pierre Mur |
---|---|
Přispěvatelé: | Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Microélectronique, Electromagnétisme et Photonique - Laboratoire d'Hyperfréquences et Caractérisation (IMEP-LAHC ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Alcatel-Thalès III-V lab (III-V Lab), THALES-ALCATEL, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), THALES [France]-ALCATEL |
Rok vydání: | 2019 |
Předmět: |
Materials science
Wafer bonding Energía Eléctrica 02 engineering and technology 010402 general chemistry 7. Clean energy 01 natural sciences law.invention law Solar cell [SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics Electrical and Electronic Engineering Optical filter ComputingMilieux_MISCELLANEOUS Common emitter Tandem Renewable Energy Sustainability and the Environment business.industry Heterojunction 021001 nanoscience & nanotechnology Condensed Matter Physics Suns in alchemy 0104 chemical sciences Electronic Optical and Magnetic Materials Energías Renovables [SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic Optoelectronics Electrónica Solar simulator 0210 nano-technology business |
Zdroj: | Progress in Photovoltaics Progress in Photovoltaics, Wiley, 2019, ⟨10.1002/pip.3128⟩ Progress in Photovoltaics, ISSN 1099-159X, 2019-07, Vol. 27, No. 7 Archivo Digital UPM Universidad Politécnica de Madrid Progress in Photovoltaics, 2019, ⟨10.1002/pip.3128⟩ |
ISSN: | 1099-159X 1062-7995 |
Popis: | Monolithic two‐terminal III‐V on Si dual‐junction solar cells, designed for low concentration applications, were fabricated by means of surface‐activated direct wafer bonding. The III‐V top cell is a heterojunction formed by an n‐Ga₀.₅In₀.₅P emitter and a p‐Al₀.₂Ga₀.₈As base. An efficiency of 21.1 ± 1.5% at one sun and 23.7 ± 1.7% at 10 suns is demonstrated, which to our knowledge is the best dual‐junction two‐terminal III‐V on Si tandem cell efficiency reported to date under verified reference conditions. The I‐V characterization of these 1‐cm² tandem cells under concentration required the development of a new method using a single‐source multiflash solar simulator and not perfectly matched component cells, also known as pseudo‐isotypes, formed by Si single‐junction cells and optical filters. In addition, the spectrum of the pulsed solar simulator was measured using a high‐speed CMOS spectrometer, allowing the calculation of the spectral mismatch correction factor. Merging these two techniques results in the hybrid corrected pseudo‐isotype (HCPI) characterization method, which shows a fast and accurate performance with a simplified procedure based on a single‐source solar simulator. Pseudo‐isotypes are easily adaptable to new cell designs by simply using a different filter, hence allowing the characterization of new multijunction solar cell architectures. |
Databáze: | OpenAIRE |
Externí odkaz: |