Asymptotics of quantum channels
Autor: | Daniele Amato, Paolo Facchi, Arturo Konderak |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Popis: | We discuss several aspects concerning the asymptotic dynamics of dicrete-time semigroups associated with a quantum channel. By using an explicit expression of the asymptotic map, which describes the action of the quantum channel on its attractor manifold, we investigate the role of permutations in the asymptotic dynamics. We show that, in general, they make the asymptotic evolution non-unitary, and they are related to the divisibility of the quantum channel. Also, we derive several results about the asymptotics of faithful and non-faithful channels, and we establish a constructive unfolding theorem for the asymptotic dynamics. 27 pages |
Databáze: | OpenAIRE |
Externí odkaz: |