Accurate estimation of sums over zeros of the Riemann zeta-function
Autor: | Richard P. Brent, Tim Trudgian, David J. Platt |
---|---|
Rok vydání: | 2021 |
Předmět: |
Pure mathematics
Algebra and Number Theory Mathematics - Number Theory Accurate estimation Applied Mathematics 11M06 11M26 Interval (mathematics) Function (mathematics) Riemann zeta function Computational Mathematics Riemann hypothesis symbols.namesake Convergent and divergent production Simple (abstract algebra) FOS: Mathematics symbols Number Theory (math.NT) Numerical estimation Mathematics |
Zdroj: | Mathematics of Computation. 90:2923-2935 |
ISSN: | 1088-6842 0025-5718 |
DOI: | 10.1090/mcom/3652 |
Popis: | We consider sums of the form $\sum \phi(\gamma)$, where $\phi$ is a given function, and $\gamma$ ranges over the ordinates of nontrivial zeros of the Riemann zeta-function in a given interval. We show how the numerical estimation of such sums can be accelerated by a simple device, and give examples involving both convergent and divergent infinite sums. |
Databáze: | OpenAIRE |
Externí odkaz: |