Fabrication of superhydrophobic and ice-repellent surfaces on pure aluminium using single and multiscaled periodic textures
Autor: | Stephan Milles, Marcos Soldera, Bogdan Voisiat, Andrés Fabián Lasagni |
---|---|
Přispěvatelé: | Publica |
Rok vydání: | 2019 |
Předmět: |
Materials science
Fabrication lcsh:Medicine chemistry.chemical_element SUPERHYDROPHOBIC SURFACES 02 engineering and technology Substrate (electronics) 010402 general chemistry 01 natural sciences Article law.invention Contact angle law Aluminium Composite material lcsh:Science DIRECT LASER INTERFERENCE PATTERNING Multidisciplinary lcsh:R Far-infrared laser ALUMINUM 021001 nanoscience & nanotechnology Laser Mechanical engineering Finite element method 0104 chemical sciences ICE-REPELLENT SURFACES Aerospace engineering purl.org/becyt/ford/2 [https] chemistry lcsh:Q Wetting purl.org/becyt/ford/2.5 [https] 0210 nano-technology |
Zdroj: | Scientific Reports CONICET Digital (CONICET) Consejo Nacional de Investigaciones Científicas y Técnicas instacron:CONICET Scientific Reports, Vol 9, Iss 1, Pp 1-13 (2019) |
ISSN: | 2045-2322 |
DOI: | 10.1038/s41598-019-49615-x |
Popis: | Fabricating aluminium surfaces with superhydrophobic and ice-repellent properties present nowadays a challenging task. In this work, multifunctional structures are manufactured by direct laser writing and direct laser interference patterning methods using pulsed infrared laser radiation (1064nm). Diferent periodic patterns with feature sizes ranging from 7.0 to 50.0µm are produced. In addition, hierarchical textures are produced combining both mentioned laser based methods. Water contact angle tests at room temperature showed that all produced patterns reached the superhydrophobic state after 13 to 16 days. In addition, these experiments were repeated at substrate temperatures from −30°C to 80°C allowing to determine three wettability behaviours as a function of the temperature. The patterned surfaces also showed ice-repellent properties characterized by a near three-fold increase in the droplets freezing times compared to the untreated samples. Using fnite element simulations, it was found that the main reason behind the ice-prevention is the change in the droplet geometrical shape due to the hydrophobic nature of the treated surfaces. Finally, dynamic tests of droplets imping the treated aluminium surfaces cooled down to −20°C revealed that only on the hierarchically patterned surface, the droplets were able to bounce of the substrate. Fil: Milles, Stephan. Technische Universität Dresden; Alemania Fil: Soldera, Marcos Maximiliano. Technische Universität Dresden; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina Fil: Voisiat, Bogdan. Technische Universität Dresden; Alemania Fil: Lasagni, Andrés Fabián. Technische Universität Dresden; Alemania. Fraunhofer Institute For Material And Beam Technology; Alemania |
Databáze: | OpenAIRE |
Externí odkaz: |