Clonal selection versus clonal cooperation: the integrated perception of immune objects
Autor: | Serge Nataf |
---|---|
Přispěvatelé: | Cardiovasculaire, métabolisme, diabétologie et nutrition (CarMeN), Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Hospices Civils de Lyon (HCL), Hospices Civils de Lyon (HCL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National de la Recherche Agronomique (INRA) |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
0301 basic medicine
Open science Visual perception genetic structures brain media_common.quotation_subject [SDV]Life Sciences [q-bio] Object (grammar) Analogy neuroimmunology Biology behavioral disciplines and activities General Biochemistry Genetics and Molecular Biology 03 medical and health sciences theoretical immunology Visual Objects Perception Antigen Processing & Recognition General Pharmacology Toxicology and Pharmaceutics Immune Response computer.programming_language media_common Cognitive science General Immunology and Microbiology T-cells Cognition Articles General Medicine Opinion Article immunity sensory perception 030104 developmental biology computer Neuroscience psychological phenomena and processes Clonal selection |
Zdroj: | F1000Research F1000Research, Faculty of 1000, 2016, 5, pp.2226. ⟨10.12688/f1000research.9386.1⟩ |
ISSN: | 2046-1402 |
Popis: | International audience; Analogies between the immune and nervous systems were first envisioned by the immunologist Niels Jerne who introduced the concepts of antigen "recognition" and immune "memory". However, since then, it appears that only the cognitive immunology paradigm proposed by Irun Cohen, attempted to further theorize the immune system functions through the prism of neurosciences. The present paper is aimed at revisiting this analogy-based reasoning. In particular, a parallel is drawn between the brain pathways of visual perception and the processes allowing the global perception of an "immune object". Thus, in the visual system, distinct features of a visual object (shape, color, motion) are perceived separately by distinct neuronal populations during a primary perception task. The output signals generated during this first step instruct then an integrated perception task performed by other neuronal networks. Such a higher order perception step is by essence a cooperative task that is mandatory for the global perception of visual objects. Based on a re-interpretation of recent experimental data, it is suggested that similar general principles drive the integrated perception of immune objects in secondary lymphoid organs (SLOs). In this scheme, the four main categories of signals characterizing an immune object (antigenic, contextual, temporal and localization signals) are first perceived separately by distinct networks of immunocompetent cells. Then, in a multitude of SLO niches, the output signals generated during this primary perception step are integrated by TH-cells at the single cell level. This process eventually generates a multitude of T-cell and B-cell clones that perform, at the scale of SLOs, an integrated perception of immune objects. Overall, this new framework proposes that integrated immune perception and, consequently, integrated immune responses, rely essentially on clonal cooperation rather than clonal selection. |
Databáze: | OpenAIRE |
Externí odkaz: |