Multiplicative Dependence Among Iterated Values of Rational Functions Modulo Finitely Generated Groups
Autor: | Joseph H. Silverman, Attila Bérczes, Igor E. Shparlinski, Alina Ostafe |
---|---|
Rok vydání: | 2019 |
Předmět: |
Pure mathematics
Mathematics - Number Theory Series (mathematics) Dynamical systems theory General Mathematics Modulo 010102 general mathematics Multiplicative function Field (mathematics) Dynamical Systems (math.DS) 010103 numerical & computational mathematics Rational function Algebraic number field 01 natural sciences Iterated function FOS: Mathematics Number Theory (math.NT) Mathematics - Dynamical Systems 0101 mathematics Mathematics |
Zdroj: | International Mathematics Research Notices. 2021:9045-9082 |
ISSN: | 1687-0247 1073-7928 |
Popis: | We study multiplicative dependence between elements in orbits of algebraic dynamical systems over number fields modulo a finitely generated multiplicative subgroup of the field. We obtain a series of results, many of which may be viewed as a blend of Northcott’s theorem on boundedness of preperiodic points and Siegel’s theorem on finiteness of solutions to $S$-unit equations. |
Databáze: | OpenAIRE |
Externí odkaz: |