Kidney dysfunction induced by a sucrose-rich diet in rat involves mitochondria ROS generation, cardiolipin changes, and the decline of autophagy protein markers

Autor: Miguel Angel Barrios-Maya, Ocarol López-Acosta, Mohammed El-Hafidi, Angélica Ruiz-Ramírez, Hector Quezada-Pablo
Rok vydání: 2019
Předmět:
Zdroj: American journal of physiology. Renal physiology. 318(1)
ISSN: 1522-1466
Popis: The mechanistic link between obesity and renal failure has been proposed to involve mitochondria reactive oxygen species generation and lipotoxicity. These pathological conditions make mitochondria of particular interest in the regulation of cell function and death by both apoptosis and autophagy. Therefore, this work was undertaken to investigate mitochondria function, autophagy, and apoptosis protein markers in the kidney from a rat model of intra-abdominal obesity and renal damage induced by a high-sucrose diet. Mitochondria from sucrose-fed (SF) kidneys in the presence of pyruvate-malate generated H2O2at a higher rate than from control (79.81 ± 4.98 vs. 65.84 ± 1.95 pmol·min−1·mg protein−1). With succinate, the release of H2O2was significantly higher compared with pyruvate-malate, and it remained higher in SF than in control mitochondria (146.4 ± 8.8 vs. 106.1 ± 5.9 pmol·min−1·mg protein−1). However, cytochrome c release from SF kidney mitochondria was lower than from control. In addition, cardiolipin, a mitochondria-specific phospholipid, was found increased in SF mitochondria due to the enhanced amount of both cardiolipin synthase and tafazzin. Cardiolipin was also found enriched with saturated and monounsaturated fatty acids, which are less susceptible to peroxidative stress involved in cytochrome c release. Furthermore, beclin-1 and light chain 3-B, as autophagy protein markers, and caspase-9, as apoptosis protein marker, were found decreased in SF kidneys. These results suggest that the decline of autophagy protein markers and the lack of apoptosis process could be a pathological mechanism of cell dysfunction leading to the progression of renal disease in SF rats.
Databáze: OpenAIRE