Mean curvature flow solitons in the presence of conformal vector fields
Autor: | Marco Rigoli, Luis J. Alías, Jorge H. de Lira |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Mathematics - Differential Geometry
Mean curvature flow Euclidean space 010102 general mathematics Mathematical analysis Conformal map 01 natural sciences Manifold Differential Geometry (math.DG) Flow (mathematics) Differential geometry 0103 physical sciences FOS: Mathematics Vector field 010307 mathematical physics Geometry and Topology Sectional curvature Mathematics::Differential Geometry 0101 mathematics Mathematics |
Popis: | The aim of this paper is to introduce a notion of mean curvature flow soliton general enough to encompass target spaces of constant sectional curvature, Riemannian products or, in increasing generality, warped product spaces. Some minor corrections in references |
Databáze: | OpenAIRE |
Externí odkaz: |