Differentials on graph complexes II: hairy graphs
Autor: | Marko Živković, Anton Khoroshkin, Thomas Willwacher |
---|---|
Rok vydání: | 2017 |
Předmět: |
Graph complexes
Operads Embedding calculus Homotopy 010102 general mathematics Statistical and Nonlinear Physics Mathematics::Algebraic Topology 01 natural sciences Graph Cohomology Knot theory Combinatorics Mathematics::K-Theory and Homology 0103 physical sciences Spectral sequence Mathematics [G03] [Physical chemical mathematical & earth Sciences] Embedding Mathématiques [G03] [Physique chimie mathématiques & sciences de la terre] 010307 mathematical physics 0101 mathematics Global structure Mathematical Physics Mathematics |
Zdroj: | Letters in Mathematical Physics, 107 (10) Letters in Mathematical Physics, 107(10), 1781–1797. Dordrecht, The Netherlands: Springer Science & Business Media B.V (2017). |
ISSN: | 1573-0530 0377-9017 |
DOI: | 10.1007/s11005-017-0964-9 |
Popis: | We study the cohomology of the hairy graph complexes which compute the rational homotopy of embedding spaces, generalizing the Vassiliev invariants of knot theory. We provide spectral sequences converging to zero whose first pages contain the hairy graph cohomology. Our results yield a way to construct many nonzero hairy graph cohomology classes out of (known) non-hairy classes by studying the cancellations in those sequences. This provide a first glimpse at the tentative global structure of the hairy graph cohomology. |
Databáze: | OpenAIRE |
Externí odkaz: |