Inference on Covariance Operators via Concentration Inequalities: k-sample Tests, Classification, and Clustering via Rademacher Complexities

Autor: Richard Nickl, John A. D. Aston, Adam B. Kashlak
Přispěvatelé: Apollo - University of Cambridge Repository
Rok vydání: 2018
Předmět:
Zdroj: Sankhya A. 81:214-243
ISSN: 0976-8378
0976-836X
Popis: We propose a novel approach to the analysis of covariance operators making use of concentration inequalities. First, non-asymptotic confidence sets are constructed for such operators. Then, subsequent applications including a k sample test for equality of covariance, a functional data classifier, and an expectation-maximization style clustering algorithm are derived and tested on both simulated and phoneme data.
15 pages, 2 figures, 6 tables
Databáze: OpenAIRE