Symmetric Instantons and Discrete Hitchin Equations
Autor: | R. S. Ward |
---|---|
Rok vydání: | 2015 |
Předmět: |
High Energy Physics - Theory
Instanton Error processing Integrable system Discretization Nonlinear Sciences - Exactly Solvable and Integrable Systems High Energy Physics::Lattice Crystal system FOS: Physical sciences Mathematical Physics (math-ph) High Energy Physics::Theory High Energy Physics - Theory (hep-th) Nahm equations Algebraic number Exactly Solvable and Integrable Systems (nlin.SI) Mathematical Physics Mathematics Mathematical physics |
Zdroj: | Journal of integrable systems, 2016, Vol.1(1), pp.xyw001 [Peer Reviewed Journal] |
DOI: | 10.48550/arxiv.1509.09128 |
Popis: | Self-dual Yang-Mills instantons on $R^4$ correspond to algebraic ADHM data. The ADHM equations for $S^1$-symmetric instantons give a one-dimensional integrable lattice system, which may be viewed as an discretization of the Nahm equations. In this note, we see that generalized ADHM data for $T^2$-symmetric instantons gives an integrable two-dimensional lattice system, which may be viewed as a discrete version of the Hitchin equations. Comment: 9 pages, 1 figure, simplified version, accepted for publication in Journal of Integrable Systems |
Databáze: | OpenAIRE |
Externí odkaz: |