A porous media finite element approach for soil instability including the second-order work criterion
Autor: | Félix Darve, Bernhard A. Schrefler, Evanthia Kakogiannou, Lorenzo Sanavia, François Nicot |
---|---|
Přispěvatelé: | Erosion torrentielle neige et avalanches (UR ETGR (ETNA)), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Laboratoire sols, solides, structures - risques [Grenoble] (3SR), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), GéoMécanique, Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Universita degli Studi di Padova, Laboratoire sols, solides, structures - risques [Grenoble] (3SR ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), UNIVERSITY OF PADUA ITA, Partenaires IRSTEA, Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), 7th Framework Programme of the European Union (ITN MuMoLaDe project) : 289911University of Padova : 60A09-5709/14 |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Effective stress
0211 other engineering and technologies 02 engineering and technology 01 natural sciences Instability Displacement (vector) Multiphase porous media Stress (mechanics) Earth and Planetary Sciences (miscellaneous) Material instability [SPI.GCIV.RISQ]Engineering Sciences [physics]/Civil Engineering/Risques Elasto-plasticity Geotechnical engineering Boundary value problem 0101 mathematics Second-order work criterion ComputingMilieux_MISCELLANEOUS 021101 geological & geomatics engineering Cavitation [SPI.GCIV.GEOTECH]Engineering Sciences [physics]/Civil Engineering/Géotechnique Mechanics Geotechnical Engineering and Engineering Geology [SPI.GCIV.CH]Engineering Sciences [physics]/Civil Engineering/Construction hydraulique Finite element method 010101 applied mathematics [SDE]Environmental Sciences Finite element simulation Landslides Porous medium Geology |
Zdroj: | Acta Geotechnica Acta Geotechnica, Springer Verlag, 2016, 11 (4), pp.805-825 HAL Acta Geotechnica, Springer Verlag, 2016, 11 (4), pp.805-825. ⟨10.1007/s11440-016-0473-5⟩ |
ISSN: | 1861-1125 1861-1133 |
DOI: | 10.1007/s11440-016-0473-5⟩ |
Popis: | International audience; This paper deals with the hydromechanical modelling of the initiation of failure in soils with particular reference to landslides. To this end, localized and diffused failure modes are simulated with a finite element model for coupled elasto-plastic variably saturated porous geomaterials, in which the material point instability is detected with the second-order work criterion based on Hill's sufficient condition of stability. Three different expressions of the criterion are presented, in which the second-order work is expressed in terms of generalized effective stress, of total stress and thirdly by taking into account the hydraulic energy contribution for partially saturated materials. The above-mentioned computational framework has been applied to study two initial boundary value problems: shear failure of a plane strain compression test of globally undrained water-saturated dense sand (where cavitation occurs at strain localization) and isochoric grain matter, and the onset of a flowslide from southern Italy due to rainfall (Sarno-Quindici events, May 5-6 1998). It is shown that the second-order work criterion applied at the material point level detects the local material instability and gives a good spatial indication of the extent of the potentially unstable domains in both the localized and diffused failure mechanisms of the cases analyzed, is able to capture the instability induced by cavitation of the liquid water and gives results according to the time evolution of plastic strains and displacement rate. |
Databáze: | OpenAIRE |
Externí odkaz: |