Nitrogen has a greater influence than phosphorus on the diazotrophic community in two successive crop seasons in Northeast China
Autor: | Xin Jiang, Dawei Guan, Jun Li, Mingchao Ma, Fengyue Shu, Jing Zhou, Nianxin Zhang, Yong Kong |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
0301 basic medicine
Science chemistry.chemical_element engineering.material Microbiology Bradyrhizobium Article Rhizobia 03 medical and health sciences Soil pH Relative species abundance Multidisciplinary Ecology biology Phosphorus food and beverages 04 agricultural and veterinary sciences biology.organism_classification Environmental sciences 030104 developmental biology chemistry Agronomy 040103 agronomy & agriculture engineering 0401 agriculture forestry and fisheries Medicine Fertilizer Species richness Diazotroph |
Zdroj: | Scientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) Scientific Reports |
ISSN: | 2045-2322 |
Popis: | Fertilizer-induced changes in soil nutrients regulate nitrogen (N) fixation in the terrestrial biosphere, but the influences of N and phosphorus (P) fertilization on the diazotroph communities in successive crop seasons were unclear. In this study, we assessed the effects of N and P (high vs. low doses) on the abundance and structure of N2-fixation communities after wheat and soybean harvest in a long-term (34 and 35 years) fertilization experiment. In both seasons, long-term N addition significantly decreased the abundance of nifH genes and 16S rDNA; in addition, high doses of N and P fertilizer decreased the richness of diazotrophs, whereas low doses did not. The proportion of the dominant genus, Bradyrhizobium, in the soybean season (86.0%) was higher than that in the wheat season (47.9%). Fertilization decreased diazotroph diversity and the relative abundance of Bradyrhizobium in the wheat season, but had insignificant effects in the soybean season. The addition of N, but not P, significantly changed the communities of both diazotrophs (at the genus level) and rhizobia (at the species level) in the two seasons. Soil pH was positively associated with nifH abundance and diazotrophic richness; soil NO3− content was negatively correlated with diazotrophic richness and positively correlated with diversity. Soil pH and NO3− content were the two main drivers shaping the soil diazotrophic community. Overall, long-term inorganic N had a greater influence than P on both diazotrophic abundance and community composition, and diazotrophic diversity was more clearly affected by fertilization in the wheat season than in the soybean season. |
Databáze: | OpenAIRE |
Externí odkaz: |