Shifted Fractional-Order Jacobi Collocation Method for Solving Variable-Order Fractional Integro-Differential Equation with Weakly Singular Kernel
Autor: | Mohamed A. Abdelkawy, Ahmed Z. M. Amin, António M. Lopes, Ishak Hashim, Mohammed M. Babatin |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Statistics and Probability
QA299.6-433 variable-order fractional integro-differential equation fractional-order shifted Jacobi polynomial QA1-939 Thermodynamics Statistical and Nonlinear Physics QC310.15-319 Riemann–Liouville fractional derivative Riemann–Liouville fractional integral Mathematics Analysis |
Zdroj: | Fractal and Fractional; Volume 6; Issue 1; Pages: 19 Fractal and Fractional, Vol 6, Iss 19, p 19 (2022) |
ISSN: | 2504-3110 |
DOI: | 10.3390/fractalfract6010019 |
Popis: | We propose a fractional-order shifted Jacobi–Gauss collocation method for variable-order fractional integro-differential equations with weakly singular kernel (VO-FIDE-WSK) subject to initial conditions. Using the Riemann–Liouville fractional integral and derivative and fractional-order shifted Jacobi polynomials, the approximate solutions of VO-FIDE-WSK are derived by solving systems of algebraic equations. The superior accuracy of the method is illustrated through several numerical examples. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |