Random polynomials and expected complexity of bisection methods for real solving

Autor: André Galligo, Elias P. Tsigaridas, Ioannis Z. Emiris
Přispěvatelé: Department of Informatics and Telecomunications [Kapodistrian Univ] (DI NKUA), National and Kapodistrian University of Athens (NKUA), Laboratoire Jean Alexandre Dieudonné (JAD), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Geometry, algebra, algorithms (GALAAD), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (... - 2019) (UNS), Department of Computer Science [Aarhus], S. Watt, Université Nice Sophia Antipolis (1965 - 2019) (UNS), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)
Rok vydání: 2010
Předmět:
Zdroj: Preceedings of International Symposium on Symbolic and Algebraic Computation
ISSAC
ISSAC, Jul 2010, Munich, Germany. pp.235-242, ⟨10.1145/1837934.1837980⟩
Scopus-Elsevier
Emiris, I Z, Galligo, A & Tsigaridas, E 2010, ' Random polynomials and expected complexity of bisection methods for real solving ', International Symposium on Symbolic and Algebraic Computation, pp. 235-242 . https://doi.org/10.1145/1837934.1837980
DOI: 10.48550/arxiv.1005.2001
Popis: International audience; Our probabilistic analysis sheds light to the following questions: Why do random polynomials seem to have few, and well separated real roots, on the average? Why do exact algorithms for real root isolation may perform comparatively well or even better than numerical ones? We exploit results by Kac, and by Edelman and Kostlan in order to estimate the real root separation of degree $d$ polynomials with i.i.d.\ coefficients that follow two zero-mean normal distributions: for $SO(2)$ polynomials, the $i$-th coefficient has variance ${d \choose i}$, whereas for Weyl polynomials its variance is ${1/i!}$. By applying results from statistical physics, we obtain the expected (bit) complexity of \func{sturm} solver, $\sOB(r d^2 \tau)$, where $r$ is the number of real roots and $\tau$ the maximum coefficient bitsize. Our bounds are two orders of magnitude tighter than the record worst case ones. We also derive an output-sensitive bound in the worst case. The second part of the paper shows that the expected number of real roots of a degree $d$ polynomial in the Bernstein basis is $\sqrt{2d}\pm\OO(1)$, when the coefficients are i.i.d.\ variables with moderate standard deviation. Our paper concludes with experimental results which corroborate our analysis.
Databáze: OpenAIRE