Fluorinated carboxylic membranes deposited by plasma enhanced chemical vapour deposition for fuel cell applications
Autor: | Audrey Martinent, Steve W. Martin, L. Le Van Jodin, Vincent Faucheux, Jean-Yves Laurent, Jessica Thery, D. Truffier-Boutry |
---|---|
Přispěvatelé: | Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), European Project: 227177,EC:FP7:ENERGY,FP7-ENERGY-NMP-2008-1,SMALLINONE(2009) |
Jazyk: | angličtina |
Rok vydání: | 2010 |
Předmět: |
Chemical vapour deposition
Analytical chemistry Energy Engineering and Power Technology Proton exchange membrane fuel cell 02 engineering and technology Chemical vapor deposition Electrolyte 010402 general chemistry 7. Clean energy 01 natural sciences chemistry.chemical_compound Plasma [CHIM.GENI]Chemical Sciences/Chemical engineering Nafion Electrical and Electronic Engineering Physical and Theoretical Chemistry Ion conductive membrane chemistry.chemical_classification Renewable Energy Sustainability and the Environment Polymer 021001 nanoscience & nanotechnology Plasma polymerization 0104 chemical sciences Membrane chemistry Chemical engineering 13. Climate action 0210 nano-technology Energy source |
Zdroj: | Journal of Power Sources Journal of Power Sources, 2010, 195 (17), pp.5573-5580. ⟨10.1016/j.jpowsour.2010.03.019⟩ Journal of Power Sources, Elsevier, 2010, 195 (17), pp.5573-5580. ⟨10.1016/j.jpowsour.2010.03.019⟩ |
ISSN: | 0378-7753 1873-2755 |
DOI: | 10.1016/j.jpowsour.2010.03.019⟩ |
Popis: | International audience; Among the fuel cell technologies, the polymer electrolyte membrane fuel cells (PEMFCs) are particularly promising because they are energy-efficient, clean, and fuel-flexible (i.e., can use hydrogen or methanol). The great majority of PEM fuel cells rely on a polymer electrolyte from the family of perfluorosulfonic acid membranes, nevertheless alternative materials are currently being developed, mainly to offer the alternative workout techniques which are required for the portable energy sources. Plasma polymerization represents a good solution, as it offers the possibility to deposit thin layer with an accurate and homogeneous thickness, even on 3D surfaces. In this paper, we present the results for the growth of proton conductive fluoro carboxylic membranes elaborated by plasma enhanced chemical vapour deposition. These membranes present conductivity values of the same order than the one of Nafion (R). The properties of the membrane, such as the chemical composition, the ionic conductivity, the swelling behaviour and the permeability were correlated to the plasma process parameters. The membranes were integrated in fuel cells on porous substrates and we present here the results regarding the barrier effect and the power output. Barrier effect similar to those of 40 mu m Nafion (R) layers was reached for 1O p.m thick carboxylic membranes. Power outputs around 3 mW cm(-2) were measured. We discuss the results regarding the gas barrier effect and the power outputs. |
Databáze: | OpenAIRE |
Externí odkaz: |