Translocation Dynamics of High-Internal Phase Double Emulsions in Narrow Channels
Autor: | Marco Lauricella, Michał Bogdan, Andrea Montessori, Jan Guzowski, Fabio Bonaccorso, Adriano Tiribocchi, Sauro Succi |
---|---|
Přispěvatelé: | Montessori, A., Tiribocchi, A., Bogdan, M., Bonaccorso, F., Lauricella, M., Guzowski, J., Succi, S. |
Rok vydání: | 2021 |
Předmět: |
Materials science
Lattice Boltzmann methods computational fluid dynamics 02 engineering and technology Atomic packing factor 01 natural sciences Article Physics::Fluid Dynamics Viscosity Rheology Phase (matter) 0103 physical sciences Electrochemistry General Materials Science 010306 general physics Spectroscopy Tissue Engineering Emulsion Drop (liquid) Surfaces and Interfaces Mechanics Hard spheres 021001 nanoscience & nanotechnology Condensed Matter Physics Condensed Matter::Soft Condensed Matter Emulsions 0210 nano-technology Porous medium Porosity |
Zdroj: | Langmuir 37 (2021): 9026–9033. doi:10.1021/acs.langmuir.1c01026 info:cnr-pdr/source/autori:Montessori A.; Tiribocchi A.; Bogdan M.; Bonaccorso F.; Lauricella M.; Guzowski J.; Succi S./titolo:Translocation Dynamics of High-Internal Phase Double Emulsions in Narrow Channels/doi:10.1021%2Facs.langmuir.1c01026/rivista:Langmuir/anno:2021/pagina_da:9026/pagina_a:9033/intervallo_pagine:9026–9033/volume:37 Langmuir |
ISSN: | 1520-5827 0743-7463 |
DOI: | 10.1021/acs.langmuir.1c01026 |
Popis: | We numerically study the translocation dynamics of double emulsion drops with multiple close-packed inner droplets within constrictions. Such liquid architectures, which we refer to as HIPdEs (high-internal phase double emulsions), consist of a ternary fluid, in which monodisperse droplets are encapsulated within a larger drop in turn immersed in a bulk fluid. Extensive two-dimensional lattice Boltzmann simulations show that if the area fraction of the internal drops is close to the packing fraction limit of hard spheres and the height of the channel is much smaller than the typical size of the emulsion, the crossing yields permanent shape deformations persistent over long periods of time. Morphological changes and rheological response are quantitatively assessed in terms of the structure of the velocity field, circularity of the emulsion, and rate of energy dissipated by viscous forces. Our results may be used to improve the design of soft mesoscale porous materials, which employ HIPdEs as templates for tissue engineering applications. |
Databáze: | OpenAIRE |
Externí odkaz: |