Pharmacological and second messenger signalling selectivities of cloned P2Y receptors
Autor: | Qing Li, Robert A. Nicholas, William C. Watt, José L. Boyer, T. K. Harden, Eduardo R. Lazarowski |
---|---|
Rok vydání: | 1996 |
Předmět: |
Agonist
medicine.medical_specialty P2Y receptor medicine.drug_class Inositol Phosphates Uridine Triphosphate Astrocytoma Biology Second Messenger Systems Uridine Diphosphate Receptors Purinergic P2Y2 Adenylyl cyclase Receptors Purinergic P2Y1 chemistry.chemical_compound Adenosine Triphosphate Adenine nucleotide Internal medicine Tumor Cells Cultured medicine Animals Humans Cloning Molecular Inositol phosphate Receptor Pharmacology chemistry.chemical_classification Phospholipase C Receptors Purinergic P2 General Neuroscience Glioma Rats Enzyme Activation Endocrinology chemistry Biochemistry Type C Phospholipases Signal transduction Signal Transduction |
Zdroj: | Journal of Autonomic Pharmacology. 16:319-324 |
ISSN: | 1365-2680 0144-1795 |
DOI: | 10.1111/j.1474-8673.1996.tb00044.x |
Popis: | 1. Four different phospholipase C (PLC)-activating P2Y receptors have been cloned and stably expressed in 1321N1 human astrocytoma cells. These include the human homologues of the P2Y1, P2Y2 and P2Y4 receptors and the rat homologue of the P2Y6 receptor. 2. The nucleotide selectivities of these four receptors have been compared directly by measuring inositol phosphate accumulation in response to nucleotides under conditions in which the initial purity and stability of agonist was rigidly assured and quantitatively assessed. 3. The P2Y1 receptor is specific for adenine nucleotides and slightly more sensitive to disphosphates than triphosphates. When expressed in 1321N1 astrocytoma cells, it couples selectively to the stimulation of PLC and not to the inhibition of adenylyl cyclase. 4. The P2Y2 receptor is activated by UTP and ATP with similar potency and is not activated by nucleoside diphosphates. Diadenosine terraphosphate is a potent agonist at this receptor. 5. The P2Y4 receptor is highly selective for UTP over ATP and is not activated by nucleoside disphosphates. 6. The P2Y6 receptor is activated most potently by UDP, but weakly or not at all by UTP, ADP and ATP. The P2Y6 receptor appears to be identical to the uridine nucleotide-specific receptor previously characterized in C6-2B rat glioma cells. 7. We have identified a P2Y receptor on C6 glioma cells that inhibits adenylyl cyclase but has no effect on PLC. This receptor exhibits a pharmacological selectivity similar but not identical to that of the P2Y1 receptor. When the P2Y1 receptor was expressed in these C6 cells, it conferred an inositol lipid signalling response to adenine nucleotides that was pharmacologically identical to that of the P2Y1 receptor. Thus, the P2Y receptor of C6 glioma cells represents an additional receptor that exhibits the classical pharmacological selectivity of a P2Y1-R, but which couples to adenylyl cyclase rather than to PLC. |
Databáze: | OpenAIRE |
Externí odkaz: |