Computation of topological invariants for real projective surfaces with isolated singularities
Autor: | Barry M. Trager, Elisabetta Fortuna, Patrizia Gianni |
---|---|
Přispěvatelé: | Sciencesconf.org, CCSD |
Rok vydání: | 2015 |
Předmět: |
Connected component
Algebra and Number Theory Implicit function Computation [MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG] Combinatorics Computational Mathematics symbols.namesake Algebraic surface Euler's formula symbols Topological invariants Gravitational singularity Projective test Mathematics |
Zdroj: | Journal of Symbolic Computation. 68:131-166 |
ISSN: | 0747-7171 |
Popis: | Given a real algebraic surface $S$ in $\pro$, we propose a procedure to determine the topology of $S$ and to compute non-trivial topological invariants for the pair $(\pro, S)$ under the hypothesis that the real singularities of $S$ are isolated. In particular, starting from an implicit equation of the surface, we compute the number of connected components of $S$, their Euler characteristics and the labelled 2-adjacency graph of the surface. |
Databáze: | OpenAIRE |
Externí odkaz: |