Multiscale investigation of crack path and microstructural changes during liquid metal embrittlement of 304L austenitic steel in liquid sodium

Autor: J. L. Courouau, Bassem Barkia, Julie Bourgon, Thierry Auger
Přispěvatelé: Laboratoire de mécanique des sols, structures et matériaux (MSSMat), CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Chimie et des Matériaux Paris-Est (ICMPE), Institut de Chimie du CNRS (INC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
Rok vydání: 2017
Předmět:
Zdroj: Corrosion Science
Corrosion Science, Elsevier, 2017, 127, ⟨10.1016/j.corsci.2017.08.009⟩
Corrosion Science, 2017, 127, ⟨10.1016/j.corsci.2017.08.009⟩
ISSN: 0010-938X
DOI: 10.1016/j.corsci.2017.08.009
Popis: Fracture micro-mechanisms and crack path of embrittled austenitic steel 304L by liquid sodium strained at 4.2 × 10−7 m s−1 and 573 K are investigated underneath the fracture surface by transmission electron microscopy down to the nanoscale. Automated crystal orientation and phase mapping analyses show that abundant martensitic transformation (γ austenite → α’ martensite) as well as mechanical twinning occur during the deformation of austenite and play a major role in the fracture process. A correlation between the fracture surface features and the underlying microstructural interfaces is evidenced, strengthening the conclusion that liquid metal embrittlement by sodium of austenitic steels is basically an interfacial cracking phenomenon.
Databáze: OpenAIRE