Asymptotic behaviour of fast diffusions on graphs
Autor: | Adam Gregosiewicz |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Large class
47D06 (Primary) 47D07 35B40 (Secondary) Semipermeable membranes Pure mathematics Algebra and Number Theory Semigroup 010102 general mathematics 01 natural sciences Fick's laws of diffusion Graph 010101 applied mathematics symbols.namesake Mathematics - Analysis of PDEs Diffusion process Poincaré conjecture symbols FOS: Mathematics Boundary value problem 0101 mathematics Mathematics Analysis of PDEs (math.AP) |
Popis: | We investigate fast diffusions on finite directed graphs. We prove results in a way dual to presented in Bobrowski, A. Ann. Henri Poincar\'e (2012) 13(6): 1501-1510 and Bobrowski, A., Morawska, K. DCDS-B (2012), 17(7): 2313-2327, and obtain asymptotic behaviour of a diffusion semigroup on a graph in $ L^1 $ and $ L^2 $ as the diffusions' speed increases and the probability of a particle passing through a vertex decreases. Comment: 24 pages, 1 figure |
Databáze: | OpenAIRE |
Externí odkaz: |