Heterologous expression of cryptomaldamide in a cyanobacterial host
Autor: | Nathan A. Moss, Ryan Simkovsky, William H. Gerwick, Raphael Reher, James W. Golden, Arnaud Taton, Andrew Ecker, Brooke A. Anderson, Tiago Leao, Lena Gerwick, Brienna Diaz, Pieter C. Dorrestein |
---|---|
Rok vydání: | 2020 |
Předmět: |
0106 biological sciences
Cyanobacteria Nostoc Biomedical Engineering macromolecular substances 01 natural sciences Biochemistry Genetics and Molecular Biology (miscellaneous) Article 03 medical and health sciences Polyketide Nonribosomal peptide 010608 biotechnology Gene cluster CRISPR Clustered Regularly Interspaced Short Palindromic Repeats Peptide Synthases Gene Chromatography High Pressure Liquid 030304 developmental biology chemistry.chemical_classification Gene Editing Genetics 0303 health sciences Biological Products biology Anabaena General Medicine biology.organism_classification chemistry Multigene Family Spectrometry Mass Matrix-Assisted Laser Desorption-Ionization bacteria Heterologous expression Oligopeptides Polyketide Synthases Plasmids |
Zdroj: | ACS Synth Biol |
DOI: | 10.1101/2020.08.26.267179 |
Popis: | Filamentous marine cyanobacteria make a variety of bioactive molecules that are produced by polyketide synthases, non-ribosomal peptide synthetases, and hybrid pathways that are encoded by large biosynthetic gene clusters. These cyanobacterial natural products represent potential drugs leads; however, thorough pharmacological investigations have been impeded by the limited quantity of compound that is typically available from the native organisms. Additionally, investigations of the biosynthetic gene clusters and enzymatic pathways have been difficult due to the inability to conduct genetic manipulations in the native producers. Here we report a set of genetic tools for the heterologous expression of biosynthetic gene clusters in the cyanobacteria Synechococcus elongatus PCC 7942 and Anabaena (Nostoc) PCC 7120. To facilitate the transfer of gene clusters in both strains, we engineered a strain of Anabaena that contains S. elongatus homologous sequences for chromosomal recombination at a neutral site and devised a CRISPR-based strategy to efficiently obtain segregated double recombinant clones of Anabaena. These genetic tools were used to express the large 28.7 kb cryptomaldamide biosynthetic gene cluster from the marine cyanobacterium Moorena (Moorea) producens JHB in both model strains. S. elongatus did not produce cryptomaldamide, however high-titer production of cryptomaldamide was obtained in Anabaena. The methods developed in this study will facilitate the heterologous expression of biosynthetic gene clusters isolated from marine cyanobacteria and complex metagenomic samples.Abstract Figure |
Databáze: | OpenAIRE |
Externí odkaz: |