Global optimality in minimum compliance topology optimization of frames and shells by moment-sum-of-squares hierarchy
Autor: | Didier Henrion, Marek Tyburec, Martin Kružík, Jan Zeman |
---|---|
Přispěvatelé: | Faculty of Civil Engineering [Prague] (FSV CTU), Czech Technical University in Prague (CTU), Équipe Méthodes et Algorithmes en Commande (LAAS-MAC), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Faculty of Electrical Engineering [Prague] (FEL CTU), HAL-LAAS, LAAS, Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Polynomial
Control and Optimization Upper and lower bounds frame structures shell structures polynomial optimization FOS: Mathematics Applied mathematics Mathematics - Optimization and Control Mathematics Semidefinite programming Sequence Hierarchy (mathematics) Topology optimization Feasible region Explained sum of squares [MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC] semidefinite programming Computer Graphics and Computer-Aided Design Computer Science Applications discrete topology optimization global optimality Optimization and Control (math.OC) Control and Systems Engineering [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] Software |
Zdroj: | 14th World Congress of Structural and Multidisciplinary Optimization 14th World Congress of Structural and Multidisciplinary Optimization, Jun 2021, Boulder, Colorado, United States 14th World Congress of Structural and Multidisciplinary Optimization (WCSMO 14) 14th World Congress of Structural and Multidisciplinary Optimization (WCSMO 14), Jun 2021, Boulder, Colorado, United States Structural and Multidisciplinary Optimization Structural and Multidisciplinary Optimization, 2021, 64 (4), pp.1963-1981. ⟨10.1007/s00158-021-02957-5⟩ |
ISSN: | 1615-147X 1615-1488 |
DOI: | 10.1007/s00158-021-02957-5⟩ |
Popis: | The design of minimum-compliance bending-resistant structures with continuous cross-section parameters is a challenging task because of its inherent non-convexity. Our contribution develops a strategy that facilitates computing all guaranteed globally optimal solutions for frame and shell structures under multiple load cases and self-weight. To this purpose, we exploit the fact that the stiffness matrix is usually a polynomial function of design variables, allowing us to build an equivalent non-linear semidefinite programming formulation over a semi-algebraic feasible set. This formulation is subsequently solved using the Lasserre moment-sum-of-squares hierarchy, generating a sequence of outer convex approximations that monotonically converges from below to the optimum of the original problem. Globally optimal solutions can subsequently be extracted using the Curto-Fialkow flat extension theorem. Furthermore, we show that a simple correction to the solutions of the relaxed problems establishes a feasible upper bound, thereby deriving a simple sufficient condition of global $\varepsilon$-optimality. When the original problem possesses a unique minimum, we show that this solution is found with a zero optimality gap in the limit. These theoretical findings are illustrated on several examples of topology optimization of frames and shells, for which we observe that the hierarchy converges in a finite (rather small) number of steps. 16 pages, 7 figures |
Databáze: | OpenAIRE |
Externí odkaz: |