Particle partition entanglement of one dimensional spinless fermions
Autor: | Adrian Del Maestro, Emanuel Casiano-Diaz, Hatem Barghathi |
---|---|
Rok vydání: | 2017 |
Předmět: |
Condensed Matter::Quantum Gases
Statistics and Probability Physics Logarithm FOS: Physical sciences Statistical and Nonlinear Physics Fermion Quantum entanglement 01 natural sciences 010305 fluids & plasmas Quantum Gases (cond-mat.quant-gas) Quantum mechanics 0103 physical sciences Partition (number theory) Condensed Matter::Strongly Correlated Electrons Boundary value problem Statistics Probability and Uncertainty Condensed Matter - Quantum Gases 010306 general physics Luttinger parameter Scaling Quantum |
Zdroj: | Journal of Statistical Mechanics: Theory and Experiment. 2017:083108 |
ISSN: | 1742-5468 |
DOI: | 10.1088/1742-5468/aa819a |
Popis: | We investigate the scaling of the R\'{e}nyi entanglement entropies for a particle bipartition of interacting spinless fermions in one spatial dimension. In the Tomonaga-Luttinger liquid regime, we calculate the second R\'{e}nyi entanglement entropy and show that the leading order finite-size scaling is equal to a universal logarithm of the system size plus a non-universal constant. Higher-order corrections decay as power-laws in the system size with exponents that depend only on the Luttinger parameter. We confirm the universality of our results by investigating the one dimensional $t-V$ model of interacting spinless fermions via exact-diagonalization techniques. The resulting sensitivity of the particle partition entanglement to boundary conditions and statistics supports its utility as a probe of quantum liquids. Comment: 19 pages, 6 figures |
Databáze: | OpenAIRE |
Externí odkaz: |