Controlling interfacial exchanges in liquid phase bonding enables formation of strong and reliable Cu–Sn soldering for high-power and temperature applications

Autor: Jean-Marc Heintz, Emilien Feuillet, Jean-François Silvain, Loic Constantin, S. Bordère, Lionel Teule-Gay, Jean Luc Diot, Yongfeng Lu, Renaud de Langlade
Přispěvatelé: Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Department of Electrical and Computer Engineering, University of Nebraska [Lincoln], University of Nebraska System-University of Nebraska System, Institut de Mécanique et d'Ingénierie (I2M), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), Composite Innovation, Innoptics
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: ACS Applied Electronic Materials
ACS Applied Electronic Materials, American Chemical Society, 2021, 3 (2), pp.921-928. ⟨10.1021/acsaelm.0c01040⟩
ISSN: 2637-6113
DOI: 10.1021/acsaelm.0c01040⟩
Popis: International audience; Developing solder joints capable of withstanding high power density, high temperature, and significant thermomechanical stress is essential to further develop electronic device performances. This study demonstrates an effective route of producing dense, robust, and reliable high-temperature Cu–Sn soldering by modifying the interfacial exchange during a transient liquid phase bonding (TLP) process. Our approach thus relies on altering internal phenomena (diffusion and transport of reactive species) rather than classical external TLP bonding parameters (e.g., time, temperature, and pressure). By adding a Cu3Sn-coated layer between Cu and Sn before the TLP process, fast dissolution of Cu in liquid Sn is achieved, altering undesired Cu6Sn5 scallop grain impingement and promoting their uniform growth within the liquid. A bonding and pore formation mechanism of the solder with or without the Cu3Sn-coated layer is proposed based on experimental and theoretical analysis. The developed TLP joint possesses a shear stress resistance of more than 80 MPa with a thermal cycle endurance superior to 1200 (−45–180 °C), making it highly reliable compared to a classical solder joint with shear and thermal cycling resistances of 45 and 500 MPa, respectively. The developed approaches thus provide an easy, affordable, and scalable method of producing a high-temperature and durable Cu–Sn joint for high-power module applications.
Databáze: OpenAIRE