Controlling interfacial exchanges in liquid phase bonding enables formation of strong and reliable Cu–Sn soldering for high-power and temperature applications
Autor: | Jean-Marc Heintz, Emilien Feuillet, Jean-François Silvain, Loic Constantin, S. Bordère, Lionel Teule-Gay, Jean Luc Diot, Yongfeng Lu, Renaud de Langlade |
---|---|
Přispěvatelé: | Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Department of Electrical and Computer Engineering, University of Nebraska [Lincoln], University of Nebraska System-University of Nebraska System, Institut de Mécanique et d'Ingénierie (I2M), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), Composite Innovation, Innoptics |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
mechanical characterization
Cu−Sn Materials science transient liquid phase bonding intermetallic Diffusion Intermetallic 02 engineering and technology Temperature cycling 7. Clean energy 01 natural sciences Stress (mechanics) 0103 physical sciences Materials Chemistry Electrochemistry Shear stress Composite material Dissolution 010302 applied physics [CHIM.MATE]Chemical Sciences/Material chemistry 021001 nanoscience & nanotechnology Electronic Optical and Magnetic Materials Shear (sheet metal) Soldering Cu-Sn 0210 nano-technology |
Zdroj: | ACS Applied Electronic Materials ACS Applied Electronic Materials, American Chemical Society, 2021, 3 (2), pp.921-928. ⟨10.1021/acsaelm.0c01040⟩ |
ISSN: | 2637-6113 |
DOI: | 10.1021/acsaelm.0c01040⟩ |
Popis: | International audience; Developing solder joints capable of withstanding high power density, high temperature, and significant thermomechanical stress is essential to further develop electronic device performances. This study demonstrates an effective route of producing dense, robust, and reliable high-temperature Cu–Sn soldering by modifying the interfacial exchange during a transient liquid phase bonding (TLP) process. Our approach thus relies on altering internal phenomena (diffusion and transport of reactive species) rather than classical external TLP bonding parameters (e.g., time, temperature, and pressure). By adding a Cu3Sn-coated layer between Cu and Sn before the TLP process, fast dissolution of Cu in liquid Sn is achieved, altering undesired Cu6Sn5 scallop grain impingement and promoting their uniform growth within the liquid. A bonding and pore formation mechanism of the solder with or without the Cu3Sn-coated layer is proposed based on experimental and theoretical analysis. The developed TLP joint possesses a shear stress resistance of more than 80 MPa with a thermal cycle endurance superior to 1200 (−45–180 °C), making it highly reliable compared to a classical solder joint with shear and thermal cycling resistances of 45 and 500 MPa, respectively. The developed approaches thus provide an easy, affordable, and scalable method of producing a high-temperature and durable Cu–Sn joint for high-power module applications. |
Databáze: | OpenAIRE |
Externí odkaz: |