Biochemical, genetic and transcriptional characterization of multibacteriocin production by the anti-pneumococcal dairy strain Streptococcus infantarius LP90
Autor: | Ingolf F. Nes, Pablo E. Hernández, Dzung B. Diep, Javier Feito, Cristina Campanero, Luis M. Cintas, Rosa del Campo, Estefanía Muñoz-Atienza, Sara Arbulu, Carmen Herranz |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
0106 biological sciences
Artificial Gene Amplification and Extension Protein Sequencing Toxicology Pathology and Laboratory Medicine medicine.disease_cause Polymerase Chain Reaction Physical Chemistry 01 natural sciences Bacteriocins Antibiotics Medicine and Health Sciences Toxins 0303 health sciences Multidisciplinary Antimicrobials Streptococcus Structural gene Drugs food and beverages Pneumococcus Genomics Antimicrobial Bacterial Pathogens Anti-Bacterial Agents Chemistry Molecular Mass Pneumococcal infections Medical Microbiology Physical Sciences Medicine Pathogens Research Article Science Toxic Agents Bacterial Toxins Antimicrobial peptides Biology Research and Analysis Methods Streptococcus infantarius Microbiology Pneumococcal Infections 03 medical and health sciences Bacteriocin Microbial Control 010608 biotechnology Genetics medicine Humans Amino Acid Sequence Molecular Biology Techniques Gene Prediction Sequencing Techniques Microbial Pathogens Molecular Biology Bacteriocin immunity Pharmacology Bacteria 030306 microbiology Organisms Biology and Life Sciences Computational Biology Genome Analysis medicine.disease Chemical Properties bacteria |
Zdroj: | PLoS ONE, Vol 15, Iss 3, p e0229417 (2020) PLoS ONE |
ISSN: | 1932-6203 |
Popis: | Streptococcus pneumoniae infections are one of the major causes of morbility and mortality worldwide. Although vaccination and antibiotherapy constitute fundamental and complementary strategies against pneumococcal infections, they present some limitations including the increase in non-vaccine serotypes and the emergence of multidrug-resistances, respectively. Ribosomally-synthesized antimicrobial peptides (i.e. bacteriocins) produced by Lactic Acid Bacteria (LAB) may represent an alternative or complementary strategy to antibiotics for the control of pneumococal infections. We tested the antimicrobial activity of 37 bacteriocinogenic LAB, isolated from food and other sources, against clinical S. pneumoniae strains. Streptococcus infantarius subsp. infantarius LP90, isolated from Venezuelan water-buffalo milk, was selected because of its broad and strong anti-pneumococcal spectrum. The in vitro safety assessment of S. infantarius LP90 revealed that it may be considered avirulent. The analysis of a 19,539-bp cluster showed the presence of 29 putative open reading frames (ORFs), including the genes encoding 8 new class II-bacteriocins, as well as the proteins involved in their secretion, immunity and regulation. Transcriptional analyses evidenced that the induction factor (IF) structural gene, the bacteriocin/IF transporter genes, the bacteriocin structural genes and most of the bacteriocin immunity genes were transcribed. MALDI-TOF analyses of peptides purified using different multichromatographic procedures revealed that the dairy strain S. infantarius LP90 produces at least 6 bacteriocins, including infantaricin A1, a novel anti-pneumococcal two-peptide bacteriocin. |
Databáze: | OpenAIRE |
Externí odkaz: |