Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms
Autor: | Thierry Lahaye, Daniel Barredo, Thomas C. Lang, Vincent Lienhard, Andreas M. Läuchli, Antoine Browaeys, H. J. Williams, Kai-Niklas Schymik, Michael Schuler, Louis-Paul Henry, Pascal Scholl, Alexander A. Eberharter |
---|---|
Přispěvatelé: | Laboratoire Charles Fabry / Optique Quantique, Laboratoire Charles Fabry (LCF), Institut d'Optique Graduate School (IOGS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Vienna University of Technology (TU Wien), Institut fur Theoretische Physik [Innsbruck], Universität Innsbruck [Innsbruck], Institut d'Optique Graduate School (IOGS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Nanomaterials and Nanotechnology Research Center (CINN), Universidad de Oviedo [Oviedo]-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Universität Hamburg (UHH), Austrian Science Fund, European Commission, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Physics
Multidisciplinary [PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph] Quantum simulator 01 natural sciences 010305 fluids & plasmas Computational physics symbols.namesake Optical tweezers 0103 physical sciences Rydberg atom symbols Rydberg formula Ising model 010306 general physics Hamiltonian (quantum mechanics) Quantum Scaling |
Zdroj: | Nature Nature, Nature Publishing Group, 2021, 595 (7866), pp.233-238. ⟨10.1038/s41586-021-03585-1⟩ Digital.CSIC. Repositorio Institucional del CSIC instname |
ISSN: | 0028-0836 1476-4679 |
DOI: | 10.1038/s41586-021-03585-1⟩ |
Popis: | Quantum simulation using synthetic systems is a promising route to solve outstanding quantum many-body problems in regimes where other approaches, including numerical ones, fail1. Many platforms are being developed towards this goal, in particular based on trapped ions2,3,4, superconducting circuits5,6,7, neutral atoms8,9,10,11 or molecules12,13. All of these platforms face two key challenges: scaling up the ensemble size while retaining high-quality control over the parameters, and validating the outputs for these large systems. Here we use programmable arrays of individual atoms trapped in optical tweezers, with interactions controlled by laser excitation to Rydberg states11, to implement an iconic many-body problem—the antiferromagnetic two-dimensional transverse-field Ising model. We push this platform to a regime with up to 196 atoms manipulated with high fidelity and probe the antiferromagnetic order by dynamically tuning the parameters of the Hamiltonian. We illustrate the versatility of our platform by exploring various system sizes on two qualitatively different geometries—square and triangular arrays. We obtain good agreement with numerical calculations up to a computationally feasible size (approximately 100 particles). This work demonstrates that our platform can be readily used to address open questions in many-body physics. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 817482 (PASQuanS). M.S. acknowledges support by the Austrian Science Fund (FWF) through grant number P 31701 (ULMAC). D.B. acknowledges support from the Ramón y Cajal programme (RYC2018-025348-I). K.-N.S. acknowledges support by the Studienstiftung des Deutschen Volkes. A.A.E. and A.M.L. acknowledge support by the Austrian Science Fund (FWF) through grant number I 4548. |
Databáze: | OpenAIRE |
Externí odkaz: |