Two-dimensional infrared spectroscopy from the gas to liquid phase: density dependentJ-scrambling, vibrational relaxation, and the onset of liquid character
Autor: | Matthew C. Rotondaro, Parth P. Shah, Lawrence D. Ziegler, Aritra Mandal, Shyamsunder Erramilli, Greg Ng Pack |
---|---|
Rok vydání: | 2019 |
Předmět: |
Materials science
General Physics and Astronomy 02 engineering and technology 010402 general chemistry 021001 nanoscience & nanotechnology 01 natural sciences Molecular physics Supercritical fluid Spectral line 0104 chemical sciences Gas to liquids Critical point (thermodynamics) Two-dimensional infrared spectroscopy Physics::Atomic and Molecular Clusters Vibrational energy relaxation Time domain Physical and Theoretical Chemistry 0210 nano-technology Ultrashort pulse |
Zdroj: | Physical Chemistry Chemical Physics. 21:21249-21261 |
ISSN: | 1463-9084 1463-9076 |
DOI: | 10.1039/c9cp04101j |
Popis: | Ultrafast 2DIR spectra and pump–probe responses of the N2O ν3 asymmetric stretch in SF6 as a function of density from the gas to supercritical phase and liquid are reported. 2DIR spectra unequivocally reveal free rotor character at all densities studied in the gas and supercritical region. Analysis of the 2DIR spectra determines that J-scrambling or rotational relaxation in N2O is highly efficient, occurring in ∼1.5 to ∼2 collisions with SF6 at all non-liquid densities. In contrast, N2O ν3 vibrational energy relaxation requires ∼15 collisions, and complete vibrational equilibrium occurs on the ∼ns scale at all densities. An independent binary collision model is sufficient to describe these supercritical state point dynamics. The N2O ν3 in liquid SF6 2DIR spectrum shows no evidence of free rotor character or spectral diffusion. Using these 2DIR results, hindered rotor or liquid-like character is found in gas and all supercritical solutions for SF6 densities ≥ρ* = 0.3, and increases with SF6 density. 2DIR spectral analysis offers direct time domain evidence of critical slowing for SF6 solutions closest to the critical point density. Applications of 2DIR to other high density and supercritical solution dynamics and descriptions are discussed. |
Databáze: | OpenAIRE |
Externí odkaz: |