Discriminative ridge regression algorithm for adaptation in statistical machine translation

Autor: Germán Sanchis-Trilles, Francisco Casacuberta, Mara Chinea-Rios
Rok vydání: 2018
Předmět:
Zdroj: RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instname
ISSN: 1433-755X
1433-7541
DOI: 10.1007/s10044-018-0720-5
Popis: [EN] We present a simple and reliable method for estimating the log-linear weights of a state-of-the-art machine translation system, which takes advantage of the method known as discriminative ridge regression (DRR). Since inappropriate weight estimations lead to a wide variability of translation quality results, reaching a reliable estimate for such weights is critical for machine translation research. For this reason, a variety of methods have been proposed to reach reasonable estimates. In this paper, we present an algorithmic description and empirical results proving that DRR is able to provide comparable translation quality when compared to state-of-the-art estimation methods [i.e. MERT and MIRA], with a reduction in computational cost. Moreover, the empirical results reported are coherent across different corpora and language pairs.
The research leading to these results were partially supported by projects CoMUN-HaT-TIN2015-70924-C2-1-R (MINECO/FEDER) and PROMETEO/2018/004. We also acknowledge NVIDIA for the donation of a GPU used in this work.
Databáze: OpenAIRE