Kolmogorov's dissipation number and the number of degrees of freedom for the 3D Navier–Stokes equations

Autor: Mimi Dai, Alexey Cheskidov
Rok vydání: 2019
Předmět:
Zdroj: Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 149:429-446
ISSN: 1473-7124
0308-2105
DOI: 10.1017/prm.2018.33
Popis: Kolmogorov's theory of turbulence predicts that only wavenumbers below some critical value, called Kolmogorov's dissipation number, are essential to describe the evolution of a three-dimensional fluid flow. A determining wavenumber, first introduced by Foias and Prodi for the 2D Navier-Stokes equations, is a mathematical analog of Kolmogorov's number. The purpose of this paper is to prove the existence of a time-dependent determining wavenumber for the 3D Navier-Stokes equations whose time average is bounded by Kolmogorov's dissipation wavenumber for all solutions on the global attractor whose intermittency is not extreme.
Revised version
Databáze: OpenAIRE