The sol–gel autocombustion as a route towards highly CO2-selective, active and long-term stable Cu/ZrO2 methanol steam reforming catalysts†

Autor: Andrew Doran, Albert Gili, Maximilian Watschinger, Bernhard Klötzer, Parastoo Delir Kheyrollahi Nezhad, Simon Penner, Marc Armbrüster, Aleksander Gurlo, Pengfei Cao, Marc Heggen, Kevin Ploner, Franz Kamutzki, Nicolas Köwitsch
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Materials Chemistry Frontiers
Materials chemistry frontiers, vol 5, iss 13
Materials chemistry frontiers 5(13), 5093-5105 (2021). doi:10.1039/D1QM00641J
ISSN: 2052-1537
DOI: 10.1039/D1QM00641J
Popis: The adaption of the sol–gel autocombustion method to the Cu/ZrO2 system opens new pathways for the specific optimisation of the activity, long-term stability and CO2 selectivity of methanol steam reforming (MSR) catalysts. Calcination of the same post-combustion precursor at 400 °C, 600 °C or 800 °C allows accessing Cu/ZrO2 interfaces of metallic Cu with either amorphous, tetragonal or monoclinic ZrO2, influencing the CO2 selectivity and the MSR activity distinctly different. While the CO2 selectivity is less affected, the impact of the post-combustion calcination temperature on the Cu and ZrO2 catalyst morphology is more pronounced. A porous and largely amorphous ZrO2 structure in the sample, characteristic for sol–gel autocombustion processes, is obtained at 400 °C. This directly translates into superior activity and long-term stability in MSR compared to Cu/tetragonal ZrO2 and Cu/monoclinic ZrO2 obtained by calcination at 600 °C and 800 °C. The morphology of the latter Cu/ZrO2 catalysts consists of much larger, agglomerated and non-porous crystalline particles. Based on aberration-corrected electron microscopy, we attribute the beneficial catalytic properties of the Cu/amorphous ZrO2 material partially to the enhanced sintering resistance of copper particles provided by the porous support morphology.
The adaption of the sol–gel autocombustion method to the Cu/ZrO2 system opens new pathways for the specific optimisation of the activity, long-term stability and CO2 selectivity of methanol steam reforming (MSR) catalysts.
Databáze: OpenAIRE