Transcriptional Analysis Allows Genome Reannotation and Reveals that Cryptococcus gattii VGII Undergoes Nutrient Restriction during Infection
Autor: | Charley Christian Staats, Patricia Ribeiro dos Santos, Marilene Henning Vainstein, Livia Kmetzsch, Rita M.C. de Almeida, Francine Melise dos Santos, Augusto Schrank, Patrícia Aline Gröhs Ferrareze, Rodrigo Silva Araujo Streit |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
0301 basic medicine
Microbiology (medical) cryptococcosis 030106 microbiology Microbiology Genome Article R265 Transcriptome 03 medical and health sciences Virology medicine bronchoalveolar lavage Amino acid transporter genome lcsh:QH301-705.5 Gene Cryptococcus gattii Phagosome chemistry.chemical_classification biology biology.organism_classification medicine.disease Amino acid 030104 developmental biology annotation lcsh:Biology (General) chemistry transcriptome amino acid Cryptococcosis |
Zdroj: | Microorganisms; Volume 5; Issue 3; Pages: 49 Microorganisms, Vol 5, Iss 3, p 49 (2017) Microorganisms |
ISSN: | 2076-2607 |
DOI: | 10.3390/microorganisms5030049 |
Popis: | Cryptococcus gattii is a human and animal pathogen that infects healthy hosts and caused the Pacific Northwest outbreak of cryptococcosis. The inhalation of infectious propagules can lead to internalization of cryptococcal cells by alveolar macrophages, a niche in which C. gattii cells can survive and proliferate. Although the nutrient composition of macrophages is relatively unknown, the high induction of amino acid transporter genes inside the phagosome indicates a preference for amino acid uptake instead of synthesis. However, the presence of countable errors in the R265 genome annotation indicates significant inhibition of transcriptomic analysis in this hypervirulent strain. Thus, we analyzed RNA-Seq data from in vivo and in vitro cultures of C. gattii R265 to perform the reannotation of the genome. In addition, based on in vivo transcriptomic data, we identified highly expressed genes and pathways of amino acid metabolism that would enable C. gattii to survive and proliferate in vivo. Importantly, we identified high expression in three APC amino acid transporters as well as the GABA permease. The use of amino acids as carbon and nitrogen sources, releasing ammonium and generating carbohydrate metabolism intermediaries, also explains the high expression of components of several degradative pathways, since glucose starvation is an important host defense mechanism. |
Databáze: | OpenAIRE |
Externí odkaz: |