Investigation of recombination-intense viral groups and their genes in the Earth’s virome
Autor: | Jan P. Meier-Kolthoff, Koji Yahara, Jumpei Uchiyama, David Paez-Espino, Hiroko Yahara |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
0301 basic medicine
Earth Planet viruses lcsh:Medicine Genome Viral Biology Genome Article Host Specificity 03 medical and health sciences chemistry.chemical_compound Humans Bacteriophages Human virome lcsh:Science Gene Ecosystem Virus classification Recombination Genetic Genetics Mouth Multidisciplinary Bacteria lcsh:R Biodiversity 030104 developmental biology chemistry Metagenomics DNA Viral Viruses Metagenome lcsh:Q Bacterial virus Recombination DNA |
Zdroj: | Scientific Reports, Vol 8, Iss 1, Pp 1-11 (2018) Meier-Kolthoff, JP; Uchiyama, J; Yahara, H; Paez-Espino, D; & Yahara, K. (2018). Investigation of recombination-intense viral groups and their genes in the Earth’s virome. Scientific Reports, 8(1). doi: 10.1038/s41598-018-29272-2. Lawrence Berkeley National Laboratory: Retrieved from: http://www.escholarship.org/uc/item/6p56h92q Scientific Reports |
ISSN: | 2045-2322 |
Popis: | Bacteriophages (phages), or bacterial viruses, are the most abundant and diverse biological entities that impact the global ecosystem. Recent advances in metagenomics have revealed their rampant abundance in the biosphere. A fundamental aspect of bacteriophages that remains unexplored in metagenomic data is the process of recombination as a driving force in evolution that occurs among different viruses within the same bacterial host. Here, we systematically examined signatures of recombination in every gene from 211 species-level viral groups in a recently obtained dataset of the Earth’s virome that contain corresponding information on the host bacterial species. Our study revealed that signatures of recombination are widespread (84%) among the diverse viral groups. We identified 25 recombination-intense viral groups, widely distributed across the viral taxonomy, and present in bacterial species living in the human oral cavity. We also revealed a significant inverse association between the recombination-intense viral groups and Type II restriction endonucleases, that could be effective in reducing recombination among phages in a cell. Furthermore, we identified recombination-intense genes that are significantly enriched for encoding phage morphogenesis proteins. Changes in the viral genomic sequence by recombination may be important to escape cleavage by the host bacterial immune systems. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |