Efficient Range Proofs with Transparent Setup from Bounded Integer Commitments
Autor: | Michael Klooß, Geoffroy Couteau, Michael Reichle, Huang Lin |
---|---|
Přispěvatelé: | Institut de Recherche en Informatique Fondamentale (IRIF (UMR_8243)), Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université Paris Cité (UPCité), Karlsruhe Institute of Technology (KIT), Mercury’s Wing and Suterusu Project, Construction and Analysis of Systems for Confidentiality and Authenticity of Data and Entities (CASCADE), Département d'informatique - ENS Paris (DI-ENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Département d'informatique de l'École normale supérieure (DI-ENS), École normale supérieure - Paris (ENS Paris) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Theoretical computer science
Computer science Computation 0102 computer and information sciences Mathematical proof 01 natural sciences 03 medical and health sciences [INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR] integer commitments 030304 developmental biology range proofs 0303 health sciences Range Proof business.industry DATA processing & computer science zero-knowledge Modular design Range (mathematics) 010201 computation theory & mathematics Bounded function State (computer science) ddc:004 business Database transaction Integer (computer science) cryptographic protocols |
Zdroj: | EUROCRYPT 2021-Annual International Conference on the Theory and Applications of Cryptographic Techniques EUROCRYPT 2021-Annual International Conference on the Theory and Applications of Cryptographic Techniques, Oct 2021, Zagreb, Croatia. pp.247-277, ⟨10.1007/978-3-030-77883-5_9⟩ Lecture Notes in Computer Science ISBN: 9783030778828 EUROCRYPT (3) |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.5445/ir/1000135424 |
Popis: | We introduce a new approach for constructing range proofs. Our approach is modular, and leads to highly competitive range proofs under standard assumption, using less communication and (much) less computation than the state of the art methods, without relying on a trusted setup. Our range proofs can be used as a drop-in replacement in a variety of protocols such as distributed ledgers, anonymous transaction systems, and many more, leading to significant reductions in communication and computation for these applications. At the heart of our result is a new method to transform any commitment over a finite field into a commitment scheme which allows to commit to and efficiently prove relations about bounded integers. Combining these new commitments with a classical approach for range proofs based on square decomposition, we obtain several new instantiations of a paradigm which was previously limited to RSA-based range proofs (with high communication and computation, and trusted setup). More specifically, we get: – Under the discrete logarithm assumption, we obtain the most compact and efficient range proof among all existing candidates (with or without trusted setup). Our proofs are 12% to 20% shorter than the state of the art Bulletproof (Bünz et al., IEEE S&P ’18) for standard choices of range size and security parameter, and are more efficient (both for the prover and the verifier) by more than an order of magnitude. – Under the LWE assumption, we obtain range proofs that improve over the state of the art in a batch setting when at least a few dozen range proofs are required. – Eventually, under standard class group assumptions, we obtain the first concretely efficient standard integer commitment scheme (without bounds on the size of the committed integer) which does not assume trusted setup. |
Databáze: | OpenAIRE |
Externí odkaz: |