Folate Copolymer-Mediated Transfection of Cultured Cells

Autor: Leamon Cp, Weigl D, Hendren Rw
Rok vydání: 1999
Předmět:
Zdroj: Bioconjugate Chemistry. 10:947-957
ISSN: 1520-4812
1043-1802
DOI: 10.1021/bc990066n
Popis: Poly(ethylene glycol) of various sizes was used as a molecular spacer to separate the cell-targeting ligand, folate, from the surface of poly-L-lysine. The resulting ternary macromolecule (pLys-PEG-folate) was investigated in various formulations for its ability to transfect reporter plasmids into receptor-bearing HeLa and IGROV cell lines. Formulations were optimized with respect to DNA content, +/- charge ratio, and the size and amount of PEG substitution off the pLys backbone. Transfection activity was highest 48 h after sample introduction, and PEG 3400 was determined to be the most favorable spacer size tested. pLys-PEG-folate:DNA transfection was also found to be both concentration dependent and saturable; plus, it was blocked by the addition of excess-free folate, indicative of a specific mechanism of uptake. Transfection activity was virtually identical for complexes formed in 10% serum-supplemented media, deionized water, or Hepes buffer. And, cell viability remained greater than 85% at the highest concentrations of pLys-PEG-folate:DNA complexes tested (4.8 microg/mL pLys 331 000; 12 microg/mL DNA). Taken together, these observations provide evidence that pLys-PEG-folate:DNA complexes are taken up specifically by the folate endocytosis pathway, and that the intramolecular spatial distance of the ligand from the pLys backbone dramatically influences transfection.
Databáze: OpenAIRE