Receptor for advanced glycation end products modulates oxidative stress and mitochondrial function in the soleus muscle of mice fed a high-fat diet
Autor: | Fritz Line Velayoudom-Cephise, Yichi Yu, Mariola Cano-Sanchez, Sylvie Bercion, Eric Boulanger, Remi Neviere, Frédéric J. Tessier |
---|---|
Přispěvatelé: | CHU Pointe-à-Pitre/Abymes [Guadeloupe], Vulnérabilité cardiovasculaire, pathologie métabolique et endocrinienne (VCPME), Université des Antilles (UA), Institute for Translational Research in Inflammation - U 1286 (INFINITE (Ex-Liric)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Male
0301 basic medicine medicine.medical_specialty Physiology Endocrinology Diabetes and Metabolism [SDV]Life Sciences [q-bio] Receptor for Advanced Glycation End Products Inflammation 030204 cardiovascular system & hematology Diet High-Fat medicine.disease_cause RAGE (receptor) Mice 03 medical and health sciences 0302 clinical medicine Glycation Physiology (medical) Internal medicine medicine Animals Muscle Skeletal Receptor ComputingMilieux_MISCELLANEOUS Soleus muscle Nutrition and Dietetics Chemistry nutritional and metabolic diseases General Medicine Mitochondria Mice Inbred C57BL Disease Models Animal Oxidative Stress 030104 developmental biology Endocrinology Fat diet medicine.symptom Oxidative stress Function (biology) |
Zdroj: | Applied Physiology, Nutrition, and Metabolism Applied Physiology, Nutrition, and Metabolism, NRC Research Press (Canadian Science Publishing), 2020, 45 (10), pp.1107-1117. ⟨10.1139/apnm-2019-0936⟩ Applied Physiology, Nutrition, and Metabolism, 2020, 45 (10), pp.1107-1117. ⟨10.1139/apnm-2019-0936⟩ |
ISSN: | 1715-5312 1715-5320 |
DOI: | 10.1139/apnm-2019-0936⟩ |
Popis: | Accumulation of advanced glycation end products (AGEs) and activation of the receptor for AGEs (RAGE) are implicated in the progression of pathologies associated with aging, chronic inflammation, diabetes, and cellular stress. RAGE activation is also implicated in cardiovascular complications of type 2 diabetes, such as nephropathy, retinopathy, accelerated vascular diseases, and cardiomyopathy. Studies investigating the effects of AGE/RAGE axis activation on skeletal muscle oxidative stress and metabolism are more limited. We tested whether a high-fat diet (HFD) would alter circulating AGE concentration, skeletal muscle AGE accumulation, and oxidative stress in wild-type and RAGE-deficient mice. The physiological significance of AGE/RAGE axis activation in HFD-fed mice was evaluated in terms of exercise tolerance and mitochondrial respiratory chain complex activity. HFD elicited adiposity, abnormal fat distribution, and oral glucose intolerance. HFD also induced accumulation of Nε-carboxymethyl-l-lysine, increased protein carbonyl levels, and impaired respiratory chain complex activity in soleus muscle. Ablation of RAGE had no effects on weight gain and oral glucose tolerance in HFD-fed mice. Peak aerobic capacity and mitochondrial cytochrome-c oxidase activity were restored in HFD-fed RAGE−/− mice. We concluded that RAGE signaling plays an important role in skeletal muscle homeostasis of mice under metabolic stress. Novelty HFD in mice induces accumulation of AGEs, oxidative stress, and mitochondrial dysfunction in the soleus muscle. RAGE, the multi-ligand receptor for AGEs, modulates oxidative stress and mitochondrial electron transport chain function in the soleus muscle of HFD-fed mice. |
Databáze: | OpenAIRE |
Externí odkaz: |